Skip to main content

Climate Change and Microbial Populations

  • Chapter
  • First Online:
Antarctic Terrestrial Microbiology
  • 1382 Accesses

Abstract

By 2100, the mean air temperature at the Earth’s surface is predicted to increase by 1.4 °C to 5.8 °C, with a disproportionate effect at high altitudes and latitudes. This chapter reviews the currently available information regarding the responses of key microbial parameters, including diversity, community composition, abundance and functions, to climate change in Antarctic soils. For microorganisms inhabiting Antarctic soils, some insight has been gained by comparing microbial communities across latitudinal gradients, or through short-term laboratory incubations and field studies. Rapid responses of mosses, nematodes, soil algae, cyanobacteria, fungi, and bacteria have been observed in some Antarctic soils. Despite these interesting findings, it is difficult to specifically predict the effects of warming on Antarctic soil microorganisms. One reason is the extreme heterogeneity of soil habitats in this region, as they vary from moist eutrophic ornithogenic soils to nutrient- and water-limited Dry Valley soils. Climate change might have rapid and direct effects on soil microbes that are not otherwise limited, but the release of other limitations (e.g., water, nutrients) could be more important in several environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie JM, Chhour KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55:21–36

    Article  CAS  PubMed  Google Scholar 

  • Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Glob Biogeochem Cy 19:1007

    Article  Google Scholar 

  • Bokhorst S, Huiskes AHL, Convey P, Aerts R (2007a) Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands. Glob Change Biol 13:2642–2653

    Article  Google Scholar 

  • Bokhorst S, Huiskes AHL, Convey P, Aerts R (2007b) The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecol 7:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Bokhorst S, Huiskes AHL, Convey P, van Bodegom PM, Aerts R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 40:1547–1556

    Article  CAS  Google Scholar 

  • Castaldi S (2000) Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol Fertil Soils 32:67–72

    Article  CAS  Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PMG (2000) Cold stress response in Archaea. Extremophiles 4:321–331

    Article  CAS  PubMed  Google Scholar 

  • Christensen S, Christensen BT (1991) Organic matter available for denitrification in different soil fractions: effect of freeze/thaw cycles and straw disposal. J Soil Sci 42:637–647

    Article  CAS  Google Scholar 

  • Christensen S, Tiedje JM (1990) Brief and vigourous N2O production by soil at spring thaw. J Soil Sci 41:1–4

    Article  CAS  Google Scholar 

  • Convey P (1996) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev 71:191–225

    Article  Google Scholar 

  • Convey P (2001) Antarctic ecosystems. Encyclopedia Biodiversity Acad Press San Diego, pp 171–184

    Google Scholar 

  • Convey P (2003) Maritime Antarctic climate change: signals from terrestrial biology. Antarct Res Ser 79:145–158

    Article  Google Scholar 

  • Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecol 182:1–10

    Google Scholar 

  • Convey P, Wynn-Williams DD (2002) Antarctic soil nematode response to artificial climate amelioration. Eur J Soil Biol 38:255–259

    Article  Google Scholar 

  • Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690

    Article  CAS  PubMed  Google Scholar 

  • Davis RC (1981) Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51:125–143

    Article  Google Scholar 

  • Davis RC (1986) Environmental-factors influencing decomposition rates in two Antarctic moss communities. Polar Biol 5:95–103

    Article  Google Scholar 

  • de Klein CAM, van Logtestijn RSP (1996) Denitrification in grassland soils in The Netherlands in relation to irrigation, N-application rate, soil water content and soil temperature. Soil Biol Biochem 28:231–237

    Article  Google Scholar 

  • Dennis PG, Newsham KK, Rushton SP, Ord VJ, O’Donnell AG, Hopkins DW (2012) Warming constrains bacterial community responses to nutrient inputs in a southern, but not northern, maritime Antarctic soil. Soil Biol Biochem 57:248–255

    Article  Google Scholar 

  • Deslippe JR, Egger KN, Henry GHR (2005) Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic. FEMS Microbiol Ecol 53:41–50

    Article  CAS  PubMed  Google Scholar 

  • Dobbie KE, Smith KA (2001) The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur J Soil Sci 52:667–673

    Article  CAS  Google Scholar 

  • Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nat 415:517–520

    Article  CAS  Google Scholar 

  • Dunne JA, Saleska SR, Fischer ML, Harte J (2004) Integrating experimental and gradient methods in ecological climate change research. Ecology 85:904–916

    Article  Google Scholar 

  • Edwards AC, Cresser MS (1992) Freezing and its effects on chemical and biological properties of soil. Adv Soil Sci 18:59–79

    Article  CAS  Google Scholar 

  • Eriksson M, Ka JO, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forcada J, Trathan PN, Reid K, Murphy EJ, Croxall JP (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Global Change Biol 12:411–423

    Article  Google Scholar 

  • Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arct Alp Res 26:290–296

    Article  Google Scholar 

  • Fox AJ, Paul A, Cooper R (1994) Measured properties of the Antarctic ice sheet derived from the SCAR Antarctic digital database. Polar Rec 30:201–206

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  CAS  PubMed  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzbugh RD, Tierney GL (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochem 56:135–150

    Article  CAS  Google Scholar 

  • Heal OW, Block W (1987) Soil biological processes in the North and South. Ecol Bull 38:47–57

    Google Scholar 

  • Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Change 1:50–53

    Article  CAS  Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542

    CAS  PubMed  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999) Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology 80:1828–1843

    Article  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  • Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental-change. Annu Rev Ecol Syst 26:683–704

    Article  Google Scholar 

  • Kennedy AD (1996) Antarctic fellfield response to climate change: a tripartite synthesis of experimental data. Oecologia 107:141–150

    Article  Google Scholar 

  • Kowalchuk GA, Yergeau E, Leveau JHJ, Sessitch A, Bailey M (2010) Plant-associated microbial communities. Environ Mol Microbiol, pp 133–147

    Google Scholar 

  • Line MA (1988) Microbial-flora of some soils of Mawson Base and the Vestfold Hills, Antarctica. Polar Biol 8:421–427

    Article  Google Scholar 

  • Maag M, Vinther FP (1996) Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl Soil Ecol 4:5–14

    Article  Google Scholar 

  • Marshall WA (1996) Biological particles over Antarctica. Nature 383:680

    Article  CAS  Google Scholar 

  • Melick DR, Seppelt RD (1992) Loss of soluble carbohydrates and changes in freezing-point of Antarctic bryophytes after leaching and repeated freeze–thaw cycles. Antarct Sci 4:399–404

    Article  Google Scholar 

  • Melick DR, Bolter M, Moller R (1994) Rates of soluble carbohydrate utilization in soils from the Windmill Islands Oasis, Wilkes Land, continental Antarctica. Polar Biol 14:59–64

    Article  Google Scholar 

  • Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012) Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723

    Article  PubMed  Google Scholar 

  • Newsham KK, Garstecki T (2007) Interactive effects of warming and species loss on model Antarctic microbial food webs. Funct Ecol 21:577–584

    Article  Google Scholar 

  • Newsham KK, Rolf J, Pearce DA, Strachan RJ (2004) Differing preferences of Antarctic soil nematodes for microbial prey. Eur J Soil Biol 40:1–8

    Article  Google Scholar 

  • Panikov NS (1999) Understanding and prediction of soil microbial community dynamics under global change. Appl Soil Ecol 11:161–176

    Article  Google Scholar 

  • Rinnan R, Michelsen A, Bååth E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol 13:28–39

    Article  Google Scholar 

  • Rinnan R, Rousk J, Yergeau E, Kowalchuk GA, Bååth E (2009) Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Glob Change Biol 15:2615–2625

    Article  Google Scholar 

  • Roberts P, Newsham KK, Bardgett RD, Farrar JF, Jones DL (2009) Vegetation cover regulates the quantity, quality and temporal dynamics of dissolved organic carbon and nitrogen in Antarctic soils. Polar Biol 32:999–1008

    Article  Google Scholar 

  • Ruess L, Michelsen A, Schmidt IK, Jonasson S (1999) Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant Soil 212:63–73

    Article  CAS  Google Scholar 

  • Scherm H, van Bruggen AHC (1994) Global warming and nonlinear growth: how important are changes in average temperature? Phytopathology 84:1380–1384

    Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002) Mineralization and distribution of nutrients in plants and microbes in four Arctic ecosystems: responses to warming. Plant Soil 242:93–106

    Article  CAS  Google Scholar 

  • Simas FNB, Schaefer CEGR, Filho MRA, Francelino MR, Filho EIF, da Costa LM (2008) Genesis, properties and classification of Cryosols from Admiralty Bay, maritime Antarctica. Geoderma 144:116–122

    Article  CAS  Google Scholar 

  • Skogland T, Lomeland S, Goksoyr J (1988) Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biol Biochem 20:851–856

    Article  Google Scholar 

  • Smith RIL (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–328

    Article  Google Scholar 

  • Smith RIL (1996) Terrestrial and freshwater biotic components of the western Antarctic peninsula. Antarct Res Ser 70:15–59

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Clim Change 2007: Physical Sci Basis 996

    Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–462

    Article  CAS  PubMed  Google Scholar 

  • Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during freeze-thaw cycles in Antarctic fellfield fines. Soil Biol Biochem 19:381–390

    Article  CAS  Google Scholar 

  • Teixeira LCRS, Yergeau E, Balieiro FC, Piccolo MC, Peixoto RS, Rosado AS, Greer CW (2013) Plant and bird presence strongly influences the microbial communities in soils of Admirality Bay, Maritime Antarctica. PLoS One 8(6):e66109

    Google Scholar 

  • Thomas DN (2005) Photosynthetic microbes in freezing deserts. Trends Microbiol 13:87–88

    Article  CAS  PubMed  Google Scholar 

  • Treonis AM, Wall DH, Virginia RA (2002) Field and microcosm studies of decomposition and soil biota in a cold desert soil. Ecosystem 5:159–170

    Article  CAS  Google Scholar 

  • Turner J, King JC, Lachlan-Cope TA, Jones PD (2002) Recent temperature trends in the Antarctic. Nature 418:291–292

    Article  CAS  PubMed  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  • Vishniac HS (1993) The microbiology of Antarctic soils. Antarct Microbiol 297–341

    Google Scholar 

  • Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  • Wasley J, Robinson SA, Lovelock CE, Popp M (2006) Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Global Change Biol 12:1800–1812

    Article  Google Scholar 

  • Wery N, Gerike U, Sharman A, Chaudhuri JB, Hough DW, Danson MJ (2003) Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from antarctic soil. Appl Environ Microbiol 69:1457–1464

    Article  PubMed Central  PubMed  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146

    Article  Google Scholar 

  • Wynn-Williams DD (1993) Microbial processes and initial stabilization of fell-field soil. Primary Succession Land, pp 17–32

    Google Scholar 

  • Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ Microbiol 10:2223–2235

    Article  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007a) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007b) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1:163–179

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007c) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonçalves O, Piceno YM, Andersen GL, Kowalchuk GA (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Kang S, Zhou JZ, Greer CW, Aerts R et al (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J 6:692–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Yergeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yergeau, E. (2014). Climate Change and Microbial Populations. In: Cowan, D. (eds) Antarctic Terrestrial Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45213-0_13

Download citation

Publish with us

Policies and ethics