Skip to main content

Primary Production and Links to Carbon Cycling in Antarctic Soils

  • Chapter
  • First Online:
Book cover Antarctic Terrestrial Microbiology

Abstract

Antarctica is not a single ecological model. Substantial differences in the temperature, precipitation (which combine to affect the available water) and radiation determine the distribution and the habit of primary producers that in turn structure the trophic. Because terrestrial primary production is operating at environmental extremes in some parts of Antarctica, particularly in continental Antarctica, the spatial and temporal subsidies to the terrestrial stock of organic carbon make proportionately larger contributions to contemporary carbon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfinito S, Fumanti B, Cavacini P (1998) Epiphytic algae on mosses from northern Victoria Land, Antarctica. Nova Hedwigia 66:473–480

    Google Scholar 

  • Baker JH (1972) The rate of production and decomposition of Chorisodontium aciphyllum (Hook. f. et Wils.) broth. Br Antarct Surv Bull 27:123–129

    Google Scholar 

  • Barrett JE, Virginia RA, Wall DH (2002) Trends in resin and KCl-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystems 5:289–299

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Parsons AN, Powers LE, Burkins MB (2004) Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85:3105–3118

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Hopkins DW, Aislabie J, Bargagli R, Bockheim JG, Campbell IR, Lyons WB, Moorhead DL, Nkem J, Sletton RS, Steltzer H, Wall DH, Wallenstein M (2006) Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem 38:3019–3034

    Article  CAS  Google Scholar 

  • Bonani G, Friemann EI, Ocampo-Friedmann R, McKay CP, Woelfli W (1988) Preliminary report of radiocarbon dating of cryptoendolithic microorganisms. Polarforschung 58:199–200

    CAS  PubMed  Google Scholar 

  • Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391

    Article  Google Scholar 

  • Burkins MB, Virginia RA, Wall DH (2002) Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Glob Change Biol 7:113–125

    Article  Google Scholar 

  • Cathey DD, Parker BC, Simmons GM, Yongue WH, Van Brunt MR (1981) The microfauna or algal mats and artificial substrates in southern Victoria Land lakes of Antarctica. Hydrobiologia 85:3–15

    Article  Google Scholar 

  • Chan Y, van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of Antarctic Dry Valley. Proc Natl Acad Sci USA 110:8990–8995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos Trans R Soc London Ser B 362:2307–2331

    Article  Google Scholar 

  • Collins NJ (1973) The productivity of selected bryophyte communities in the Maritime Antarctic. In: Proceedings of the Tundra Biome conference, Dublin, Ireland, pp 177–183

    Google Scholar 

  • Conovitz PA, MacDonald LH, McKnight DM (2006) Spatial and temporal active dynamics along three glacial melt-water stream in the McMurdo Dry Valleys, Antarctica. Arct Antarct Alpine Res 38:42–53

    Article  Google Scholar 

  • Convey P (2013) Antarctic Ecosystems. In: Levin SA (ed) Encyclopedia of Biodiversity, 2nd edn. Vol 1. Academic Press, Waltham, MA, pp 179–188

    Article  Google Scholar 

  • Convey P, Hopkins DW, Roberts SJ, Tyler AN (2011) Global southern limit of flowering plants and moss peat accumulation. Polar Res 30:8929

    Article  Google Scholar 

  • Davis RC (1981) Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51:125–143

    Article  Google Scholar 

  • Elberling B, Gregorich EG, Hopkins DW, Sparrow AD, Novis P, Greenfield LG (2006) Distribution and dynamics of soil organic matter in an Antarctic Dry Valley. Soil Biol Biochem 38(10):3095–3106

    Article  CAS  Google Scholar 

  • Fenton JHC (1978) The growth of Antarctic moss peat banks. Dissertation, University of London

    Google Scholar 

  • Fretwell PT, Convey P, Fleming AH, Peat HJ, Hughes KA (2011) Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol 34:273–281

    Article  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the crypoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69

    Article  CAS  PubMed  Google Scholar 

  • Green TGA, Schroeter B, Kappen L, Seppelt RD, Maseyk K (1998) An assessment of the relationship between chlorophyll a fluorescence and CO2 gas exchange from field measurements on a moss and lichen. Planta 206:611–618

    Article  CAS  Google Scholar 

  • Hajek TS, Balance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell wall polysaccharides play an important role in decay resistance of Sphagnum and actively depress decomposition in vitro. Biogeochemistry 103:45–57

    Article  CAS  Google Scholar 

  • Hall BL, Denton GH (2002) Holocene history of the Wilson Piedmont Glacier along the southern Scott Coast, Antarctica. The Holocene 12:619–627

    Article  Google Scholar 

  • Hall BL, Denton GH, Overtuf B (2001) Glacial Lake Wright, a high-level Antarctic lake during the LGM and early Holocene. Antarct Sci 13:53–60

    Article  Google Scholar 

  • Hawes I, Schwarz AM (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J Phycol 35:448–459

    Article  CAS  Google Scholar 

  • Holm-Henson O, Helbling EW, Lubin D (1993) Ultraviolet radiation in Antarctica: inhibition of primary production. Photochem Photobiol 58:567–570

    Article  Google Scholar 

  • Hopkins DW, Sparrow AD, Novis PM, Gregorich EG, Elberling B, Greenfield LG (2006a) Controls on the distribution of productivity and organic resources in Antarctic dry valley soils. Proc R Soc London B Biol Sci 273:2687–2695

    Article  CAS  Google Scholar 

  • Hopkins DW, Sparrow AD, Elberling B, Gregorich EG, Novis P, Greenfield LG, Tilston EL (2006b) Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem 38:3130–3140

    Article  CAS  Google Scholar 

  • Hopkins DW, Sparrow AD, Gregorich EG, Elberling B, Novis P, Fraser F, Scrimgeour C, Dennis PG, Meier-Augenstein W, Greenfield LG (2009) Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environ Microbiol 11:597–608

    Article  CAS  PubMed  Google Scholar 

  • Janetschek H (1970) Environments and ecology of terrestrial arthropods in the high Antarctic. Antarct Ecol 2:871–885

    Google Scholar 

  • Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporations and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest growing communities on earth? Appl Environ Microbiol 57:2308–2311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kappen L, Schroeter B, Green TGA, Seppelt RD (1998) Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia 113:325–331

    Article  Google Scholar 

  • Longton RE (1970) Growth and productivity in the moss Polytrichum alpestre Hoppe in Antarctic regions. Antarct Ecol 2:818–837

    Google Scholar 

  • McKnight DM, Niyogi DK, Alger AS, Bomblies A, Conovitz PA, Tate CM (1999) Dry valley streams in Antarctica: ecosystems waiting for water. Bioscience 49:985–995

    Article  Google Scholar 

  • Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–963

    Article  Google Scholar 

  • Moorhead DL, Barrett JE, Virginia RA, Wall DH, Porazinska D (2003) Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biol 26:567–576

    Article  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terresrial lithophytic (rock) communities. In: Friedmann EI (ed) FAntarctic microbiology. Wiley, New York, pp. 181–196

    Google Scholar 

  • Nkem JH, Wall DH, Virginia RA, Barrett JE, Broos E, Porazinska DL, Adams BL (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352

    Article  Google Scholar 

  • Novis PM, Whitehead DC, Gregorich EG, Hunt JE, Sparrow AD, Hopkins DW, Elberling B, Greenfield LG (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob Change Biol 13:1224–1237

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Pannewitz S, Green TGA, Maysek K, Schlensog M, Seppelt R, Sancho LG, Turk R, Schroeter B (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarct Sci 17:341–352

    Article  Google Scholar 

  • Pannewitz S, Green TGA, Schlensog M, Seppelt R, Sancho LG, Schroeter B (2006) Photosynthesis performance of Xanthoria mawsonii C.W. Dodge in coastal habitats, Ross Sea region, continental Antarctica. Lichenologist 38:67–81

    Article  Google Scholar 

  • Parker BC, Simmons GM, Wharton RA Jr, Seaburg KG, Love FG (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of blue-green algal mats. J Phycol 18:72–78

    Article  Google Scholar 

  • Parsons AN, Barrett JE, Wall DH, Virginia RA (2004) Soil carbon dioxide flux in Antarctic Dry Valley ecosystems. Ecosystems 7:286–295

    Article  CAS  Google Scholar 

  • Philben M, Kaiser K, Benner R (in press) Biochemical evidence for minimal vegetation change in peatlands of the West Siberian Lowland during the medieval climate anomaly and little ice age. Bigeosci

    Google Scholar 

  • Pocock T, Lachance MA, Proschold T, Priscu J, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney, Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148

    Article  Google Scholar 

  • Schwarz AMJ, Green TGA, Seppelt RD (1992) Terrestrial vegetation at Canada Glacier, Southern Victoria Land, Antarctica. Polar Biol 12:397–404

    Article  Google Scholar 

  • Shanhun FL, Almond PC, Clough TJ, Smith MS (2012) Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biol Biochem 53:99–111

    Article  CAS  Google Scholar 

  • Smith RIL (1972) Vegetation of the South Orkney Islands with particular reference to Signy Island. Br Antarct Surv Sci Rep 68:124

    Google Scholar 

  • Smith RIL, Corner RWM (1973) Vegetation of the Arthur Harbour-Argentine Islands region of the Antarctic Peninsula. Br Antarct Surv Bull 33:89–122

    Google Scholar 

  • Smith RIL, Walton DWH (1975) South Georgia, Subantarctic. In: Rosswall T, Heal OW (eds) Structure and Function of Tundra Ecosystems. Ecol Bull 20:399–423

    Google Scholar 

  • Upson R, Newsham KK, Read DJ (2008) Root-fungal associations of Colobanthus quitensis and Deschampsia antarctica in the Maritime and sub-Antarctic. Arct Antarct Alpine Res 40:592–599

    Article  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11

    Article  PubMed  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, p 304

    Google Scholar 

  • Wall DH (2012) Global change in a low diversity terrestrial ecosystem: the McMurdo Dry Valleys. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A (eds) Antarctic ecosystems: an extreme environment in a changing world. Wiley, New York, pp 44–62

    Chapter  Google Scholar 

  • Wilson AT (1965) Escape of algae from frozen lakes and ponds. Science 46:376

    Google Scholar 

  • Wilson K, Sprent JI, Hopkins DW (1997) Nitrification in Antarctic soils. Nature 385:404

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1994) Potential effects of ultraviolet radiation on Antarctic primary terrestrial colonizers: cyanobacteria, algae and cryptogams. Ultraviolet Radiat Antarct Meas Biol Eff Antarct Res Ser 62:243–257

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Antarctica New Zealand and the New Zealand Foundation for Research in Science and Technology, the Royal Society (of London), the Carnegie Trust for the Universities of Scotland, the UK Natural Environment Research Council, which supports the British Antarctic Survey, and the UK Biotechnology and Biological Sciences Research Council with supports Rothamsted Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Hopkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hopkins, D.W., Newsham, K.K., Dungait, J.A.J. (2014). Primary Production and Links to Carbon Cycling in Antarctic Soils. In: Cowan, D. (eds) Antarctic Terrestrial Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45213-0_12

Download citation

Publish with us

Policies and ethics