Skip to main content

Pericytes: a Ubiquitous Source of Multipotent Adult Tissue Stem Cells

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures

Abstract

There is a perivascular reservoir of stem/progenitor cells for cellular therapies. Bone marrow- and adipose-derived mesenchymal progenitor/stem cells possess great promise for regenerative medicine, immunomodulation, and cancer-targeting therapies. The authors describe working toward a definition of the pericyte and discuss putative markers that identify pericytes. These markers include alpha smooth muscle actin (αSMA) and desmin expression, neuron-glial 2 (NG2) and nestin expression, expression of CD146 and CD106, and expression of MSC markers and the mucosialin CD34. The authors then go into the developmental origins of pericytes. Pericytes may prove to be promising tools for future regenerative applications because they represent a ubiquitous source of mesenchymal progenitors. However, they are comprised of a heterogeneous mixture of specialized cells that possess phenotypic variability among tissues and even throughout the vascular tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    CAS  PubMed  Google Scholar 

  2. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.

    CAS  PubMed  Google Scholar 

  3. Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells. 2011;3(4):25–33.

    PubMed Central  PubMed  Google Scholar 

  4. Fritz V, Jorgensen C. Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr Stem Cell Res Ther. 2008;3(1):32–42.

    CAS  PubMed  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    CAS  PubMed  Google Scholar 

  6. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    CAS  PubMed  Google Scholar 

  7. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36.

    CAS  PubMed  Google Scholar 

  8. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.

    CAS  PubMed  Google Scholar 

  9. Covas DT, Panepucci RA, Fontes AM, Silva Jr WA, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146(+) perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642–54.

    CAS  PubMed  Google Scholar 

  10. Zimmerlin L, Donnenberg VS, Donnenberg AD. Rare event detection and analysis in flow cytometry: bone marrow mesenchymal stem cells, breast cancer stem/progenitor cells in malignant effusions, and pericytes in disaggregated adipose tissue. Methods Mol Biol. 2011;699:251–73.

    CAS  PubMed  Google Scholar 

  11. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.

    CAS  PubMed  Google Scholar 

  12. Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Péault B, Rubin JP, Donnenberg AD. Stromal vascular progenitors in adult human adipose tissue. Cytometry A. 2010;77(1):22–30.

    PubMed  Google Scholar 

  13. Neuber GA. Fettransplantation. Chir Kongr Verhandl Deutsche Gesellschaft für Chirurgie. 1893;22:66.

    Google Scholar 

  14. Czerny V. Plastischer Ersatz der Brustdruse durch ein Lipom. Chir Kong Verhandl. 1895;2:216.

    Google Scholar 

  15. Donnenberg VS, Zimmerlin L, Rubin JP, Donnenberg AD. Regenerative therapy after cancer: what are the risks? Tissue Eng Part B Rev. 2010;16(6):567–75.

    PubMed Central  PubMed  Google Scholar 

  16. Yoshimura K, Matsumoto D, Gonda K. A clinical trial of soft tissue augmentation by lipoinjection with adipose-derived stromal cells (ASCs). Presented at the International Fat Applied Technology Society (IFATS) annual meeting, the role of adipose tissue in regenerative medicine: opportunities for clinical therapy. Charlottesville, 11 Sept 2005.

    Google Scholar 

  17. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshimura K. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12(12):3375–82.

    CAS  PubMed  Google Scholar 

  18. Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32(1):48–55.

    PubMed Central  PubMed  Google Scholar 

  19. Eberth CJ. Handbuch der Lehre von den Geweben des Menschen und der Thiere. Leipzig: W Engelman; 1871.

    Google Scholar 

  20. Rouget C. Mémoire sur le développement, la structure et les propriétés physiologiques des capillaires sanguins et lymphatiques. Archives Physiol Normale Pathol. 1873;5:603–61.

    Google Scholar 

  21. Cohnheim J. Über entzündung und eiterung [About inflammation and sepsis]. Pathol Anat Physiol Klin Med Virchows Archiv. 1867;40(1):1–79.

    Google Scholar 

  22. Haeckel E. Natürliche Schöpfungsgeschichte. Berlin: Georg Reimer; 1868.

    Google Scholar 

  23. Zimmerlin L, Donnenberg VS, Donnenberg AD. Pericytes: a universal adult tissue stem cell? Cytometry A. 2012;81(1):12–4.

    PubMed  Google Scholar 

  24. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, Rydén M, Frisén J, Arner P. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

    CAS  PubMed  Google Scholar 

  25. Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2012;83(1):134–40.

    PubMed  Google Scholar 

  26. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.

    CAS  PubMed  Google Scholar 

  27. Diaz-Flores L, Gutiérrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martín-Vasallo P, Díaz-Flores Jr L. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009;24(7):909–69.

    CAS  PubMed  Google Scholar 

  28. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008;14(16): 581–93.

    Google Scholar 

  29. Zimmermann KW. Der feinere bau der blutcapillaren. Anat Embryol. 1923;68(1):29–109.

    Google Scholar 

  30. Sims DE. The pericyte – a review. Tissue Cell. 1986;18(2):153–74.

    CAS  PubMed  Google Scholar 

  31. Mandarino LJ, Sundarraj N, Finlayson J, Hassell HR. Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res. 1993;57(5):609–21.

    CAS  PubMed  Google Scholar 

  32. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003;163(5):1801–15.

    PubMed Central  PubMed  Google Scholar 

  33. Andreeva ER, Pugach IM, Gordon D, Orekhov AN. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell. 1998;30(1):127–35.

    CAS  PubMed  Google Scholar 

  34. Juchem G, Weiss DR, Gansera B, Kemkes BM, Mueller-Hoecker J, Nees S. Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. Am J Physiol Heart Circ Physiol. 2009;298(3):H754–70.

    PubMed  Google Scholar 

  35. Diaz-Flores L, Valladares F, Gutierrez R, Varela H. The role of the pericytes of the adventitial microcirculation in the arterial intimal thickening. Histol Histopathol. 1990;5(2):145–53.

    CAS  PubMed  Google Scholar 

  36. Smith SW, Chand S, Savage CO. Biology of the renal pericyte. Nephrol Dial Transplant. 2012;27(6):2149–55.

    PubMed  Google Scholar 

  37. Khan WS, Tew SR, Adesida AB, Hardingham TE. Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Res Ther. 2008;10(4):R74.

    PubMed Central  PubMed  Google Scholar 

  38. Gushi A, Tanaka M, Tsuyama S, Nagai T, Kanzaki T, Kanekura T, Matsuyama T. The 3G5 antigen is expressed in dermal mast cells but not pericytes. J Cutan Pathol. 2008;35(3):278–84.

    PubMed  Google Scholar 

  39. Dore-Duffy P, Cleary K. Morphology and properties of pericytes. Methods Mol Biol. 2011;686:49–68.

    CAS  PubMed  Google Scholar 

  40. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696–704.

    PubMed  Google Scholar 

  41. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005;7(4):452–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Herman IM, D’Amore PA. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 1985;101(1):43–52.

    CAS  PubMed  Google Scholar 

  43. Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, Aguila HL, Rowe DW, Kalajzic I. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 2008;43(3):501–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Cai X, Lin Y, Hauschka PV, Grottkau BE. Adipose stem cells originate from perivascular cells. Biol Cell. 2011;103(9):435–47.

    PubMed  Google Scholar 

  45. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent Results Cancer Res. 2009;180: 103–14.

    Google Scholar 

  46. Verbeek MM, Otte-Höller I, Wesseling P, Ruiter DJ, de Waal RM. Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. Am J Pathol. 1994;144(2):372–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Nehls V, Denzer K, Drenckhahn D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 1992;270(3):469–74.

    CAS  PubMed  Google Scholar 

  48. Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006;26(5):613–24.

    CAS  PubMed  Google Scholar 

  49. Murfee WL, Skalak TC, Peirce SM. Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation. 2005;12(2):151–60.

    CAS  PubMed  Google Scholar 

  50. Ozerdem U, Stallcup WB. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis. 2003;6(3):241–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A. 2011;108(16):6503–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Klein T, Ling Z, Heimberg H, Madsen OD, Heller RS, Serup P. Nestin is expressed in vascular endothelial cells in the adult human pancreas. J Histochem Cytochem. 2003;51(6):697–706.

    CAS  PubMed  Google Scholar 

  53. Betsholtz C, Karlsson L, Lindahl P. Developmental roles of platelet-derived growth factors. Bioessays. 2001;23(6):494–507.

    CAS  PubMed  Google Scholar 

  54. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J. A pericyte origin of spinal cord scar tissue. Science. 2011;333(6039):238–42.

    PubMed  Google Scholar 

  55. Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.

    CAS  PubMed  Google Scholar 

  56. Hellstrom M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126(14):3047–55.

    CAS  PubMed  Google Scholar 

  57. Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 2004;15(4):215–28.

    CAS  PubMed  Google Scholar 

  58. Paul G, Özen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renström E, Svensson M, Haegerstrand A, Brundin P. The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One. 2012;7(4):e35577.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Jung KH, Chu K, Lee ST, Bahn JJ, Jeon D, Kim JH, Kim S, Won CH, Kim M, Lee SK, Roh JK. Multipotent PDGFRbeta-expressing cells in the circulation of stroke patients. Neurobiol Dis. 2010;41(2):489–97.

    PubMed  Google Scholar 

  60. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903–11.

    CAS  PubMed  Google Scholar 

  61. Vignais L, Nait Oumesmar B, Baron-Van Evercooren AB. PDGF-alpha receptor is expressed by mature neurons of the central nervous system. Neuroreport. 1995;6(15):1993–6.

    CAS  PubMed  Google Scholar 

  62. Hoch RV, Soriano P. Roles of PDGF in animal development. Development. 2003;130(20):4769–84.

    CAS  PubMed  Google Scholar 

  63. Etchevers HC, Vincent C, Le Douarin NM, Couly GF. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development. 2001;128(7):1059–68.

    CAS  PubMed  Google Scholar 

  64. Shih IM. The role of CD146 (Mel-CAM) in biology and pathology. J Pathol. 1999;189(1):4–11.

    CAS  PubMed  Google Scholar 

  65. Carter RA, Wicks IP. Vascular cell adhesion molecule 1 (CD106): a multifaceted regulator of joint inflammation. Arthritis Rheum. 2001;44(5):985–94.

    CAS  PubMed  Google Scholar 

  66. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003;116(Pt 9):1827–35.

    CAS  PubMed  Google Scholar 

  67. Park TS, Gavina M, Chen CW, Sun B, Teng PN, Huard J, Deasy BM, Zimmerlin L, Péault B. Placental perivascular cells for human muscle regeneration. Stem Cells Dev. 2010;20(3):451–63.

    PubMed Central  PubMed  Google Scholar 

  68. Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, Rosset P, Sensebé L, Layrolle P, Häupl T, Charbord P. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood. 2008;111(5):2631–5.

    CAS  PubMed  Google Scholar 

  69. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell. 2008;135(2):240–9.

    CAS  PubMed  Google Scholar 

  71. Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest. 1976;58(3):699–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Dardick I, Poznanski WJ, Waheed I, Setterfield G. Ultrastructural observations on differentiating human preadipocytes cultured in vitro. Tissue Cell. 1976;8(3):561–71.

    CAS  PubMed  Google Scholar 

  73. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85.

    PubMed  Google Scholar 

  75. Li H, Zimmerlin L, Marra KG, Donnenberg VS, Donnenberg AD, Rubin JP. Adipogenic potential of adipose stem cell subpopulations. Plast Reconstr Surg. 2011;128(3):663–72.

    CAS  PubMed  Google Scholar 

  76. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1):77–85.

    CAS  PubMed  Google Scholar 

  77. Yamanishi H, Fujiwara S, Soma T. Perivascular localization of dermal stem cells in human scalp. Exp Dermatol. 2012;21(1):78–80.

    CAS  PubMed  Google Scholar 

  78. Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Péault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 2011;21(8):1299–3108.

    PubMed Central  PubMed  Google Scholar 

  79. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208(1):64–76.

    CAS  PubMed  Google Scholar 

  80. Sengenes C, Lolmède K, Zakaroff-Girard A, Busse R, Bouloumié A. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol. 2005;205(1):114–22.

    CAS  PubMed  Google Scholar 

  81. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.

    PubMed  Google Scholar 

  82. Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumié A, Casteilla L, Sengenès C, Bourin P. Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond). 2011;35(9):1141–53.

    CAS  Google Scholar 

  83. Waller EK, Olweus J, Lund-Johansen F, Huang S, Nguyen M, Guo GR, Terstappen L. The “common stem cell” hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood. 1995;85(9):2422–35.

    CAS  PubMed  Google Scholar 

  84. Waller EK, Huang S, Terstappen L. Changes in the growth properties of CD34+, CD38− bone marrow progenitors during human fetal development. Blood. 1995;86(2):710–8.

    CAS  PubMed  Google Scholar 

  85. Simmons DJ, Seitz P, Kidder L, Klein GL, Waeltz M, Gundberg CM, Tabuchi C, Yang C, Zhang RW. Partial characterization of rat marrow stromal cells. Calcif Tissue Int. 1991;48(5):326–34.

    CAS  PubMed  Google Scholar 

  86. Kaiser S, Hackanson B, Follo M, Mehlhorn A, Geiger K, Ihorst G, Kapp U. BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy. 2007;9(5):439–50.

    CAS  PubMed  Google Scholar 

  87. Clark ER, Clark EL. The development of adventitial (Rouget) cells on the blood capillaries of amphibian larvae. Am J Anat. 1925;35(2):239–64.

    Google Scholar 

  88. Drake CJ, Hungerford JE, Little CD. Morphogenesis of the first blood vessels. Ann N Y Acad Sci. 1998;857:155–79.

    CAS  PubMed  Google Scholar 

  89. Dupin E, Creuzet S, Le Douarin NM. The contribution of the neural crest to the vertebrate body. Adv Exp Med Biol. 2006;589:96–119.

    CAS  PubMed  Google Scholar 

  90. Billon N, Iannarelli P, Monteiro MC, Glavieux-Pardanaud C, Richardson WD, Kessaris N, Dani C, Dupin E. The generation of adipocytes by the neural crest. Development. 2007;134(12):2283–92.

    CAS  PubMed  Google Scholar 

  91. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell. 2007;129(7):1377–88.

    CAS  PubMed  Google Scholar 

  92. Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, Shimmura S, Nagai Y, Nakagawa T, Okano H, Matsuzaki Y. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun. 2009;379(4):1114–9.

    CAS  PubMed  Google Scholar 

  93. Limana F, Zacheo A, Mocini D, Mangoni A, Borsellino G, Diamantini A, De Mori R, Battistini L, Vigna E, Santini M, Loiaconi V, Pompilio G, Germani A, Capogrossi MC. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007;101(12):1255–65.

    CAS  PubMed  Google Scholar 

  94. Dettman RW, Denetclaw Jr W, Ordahl CP, Bristow J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998;193(2):169–81.

    CAS  PubMed  Google Scholar 

  95. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454(7200):109–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174(2):221–32.

    CAS  PubMed  Google Scholar 

  97. Cossu G. Bianco p: mesoangioblasts – vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev. 2003;13(5):537–42.

    CAS  PubMed  Google Scholar 

  98. Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 2007;15(5):867–77.

    CAS  PubMed  Google Scholar 

  99. Oberlin E, Tavian M, Blazsek I, Péault B. Blood-forming potential of vascular endothelium in the human embryo. Development. 2002;129(17):4147–57.

    CAS  PubMed  Google Scholar 

  100. Zambidis ET, Park TS, Yu W, Tam A, Levine M, Yuan X, Pryzhkova M, Péault B. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood. 2008;112(9):3601–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386(6624):488–93.

    CAS  PubMed  Google Scholar 

  102. Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106(3):860–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Park TS, Zimmerlin L, Zambidis ET. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells. Cytometry A. 2012;83(1):114–26.

    PubMed Central  PubMed  Google Scholar 

  104. Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7(6):718–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Bakre MM, Hoi A, Mong JC, Koh YY, Wong KY, Stanton LW. Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. J Biol Chem. 2007;282(43):31703–12.

    CAS  PubMed  Google Scholar 

  106. Kopher RA, Penchev VR, Islam MS, Hill KL, Khosla S, Kaufman DS. Human embryonic stem cell-derived CD34+ cells function as MSC progenitor cells. Bone. 2010;47(4):718–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Barbet R, Peiffer I, Hatzfeld A, Charbord P, Hatzfeld JA. Comparison of gene expression in human embryonic stem cells, hESC-derived mesenchymal stem cells and human mesenchymal stem cells. Stem Cells Int. 2011;2011:368192.

    PubMed Central  PubMed  Google Scholar 

  108. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2011;125(1):87–99.

    PubMed  Google Scholar 

  109. Orr-Urtreger A, Lonai P. Platelet-derived growth factor-A and its receptor are expressed in separate, but adjacent cell layers of the mouse embryo. Development. 1992;115(4):1045–58.

    CAS  PubMed  Google Scholar 

  110. Weston JA, Yoshida H, Robinson V, Nishikawa S, Fraser ST, Nishikawa S. Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis. Dev Dyn. 2004;229(1):118–30.

    PubMed  Google Scholar 

  111. Sakurai H, Inami Y, Tamamura Y, Yoshikai T, Sehara-Fujisawa A, Isobe K. Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium. Stem Cell Res. 2009;3(2–3):157–69.

    CAS  PubMed  Google Scholar 

  112. Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Müller D. Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol. 2004;167(5):935–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Pinzani M, Failli P, Ruocco C, Casini A, Milani S, Baldi E, Giotti A, Gentilini P. Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest. 1992;90(2):642–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1987;1(4):272–81.

    CAS  PubMed  Google Scholar 

  115. Montiel-Eulefi E, Nery AA, Rodrigues LC, Sánchez R, Romero F, Ulrich H. Neural differentiation of rat aorta pericyte cells. Cytometry A. 2011;81(1):65–71.

    PubMed  Google Scholar 

  116. Abedin M, Tintut Y, Demer LL. Mesenchymal stem cells and the artery wall. Circ Res. 2004;95(7):671–6.

    CAS  PubMed  Google Scholar 

  117. Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami AP, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation. 2010;121(15):1735–45.

    PubMed Central  PubMed  Google Scholar 

  118. Covas DT, Piccinato CE, Orellana MD, Siufi JL, Silva Jr WA, Proto-Siqueira R, Rizzatti EG, Neder L, Silva AR, Rocha V, Zago MA. Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res. 2005;309(2):340–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants BC032981 and BC044784 from the Department of Defense, grant R01CA 114246 from the NIH, grant R01-HL-085819 from the National Heart, Lung, and Blood Institute, the Hillman Foundation, the Glimmer of Hope Foundation, the Commonwealth of Pennsylvania, through the McGowan Institute of Regenerative Medicine, the NHLBI (Production Assistance for Cellular Therapy (PACT) N01-HB-37165), and the Department of Defense Biomedical Translational Initiative (W911QY-09-C-0209). We would also like to thank Diana Napper from The Glimmer of Hope Foundation for her support. The UPCI Cytometry Facility is supported by CCSG P30CA047904. Flow cytometry data were collected with the technical assistance of Melanie E. Pfeifer and E. Michael Meyer. Dr. Zambidis and Dr. Park were supported by grants from NIH 1U01HL099775 and U01HL100397 (ETZ) and the Maryland Stem Cell Research Fund: 2011-MS CRF II-0008-00 and 2007-MSCRF II-0379-00 (ETZ) and the Maryland Stem Cell Research Fund Postdoctoral Fellowship grant 2009-MSCRF III-106570 (TSP).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmerlin, L., Park, T.S., Donnenberg, V.S., Zambidis, E.T., Donnenberg, A.D. (2014). Pericytes: a Ubiquitous Source of Multipotent Adult Tissue Stem Cells. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics