Skip to main content

Surface Antigenic Profiles of Stem Cells from the Human Bone Marrow, Subcutaneous Fat, and Omentum Fat

  • Chapter
  • First Online:
  • 1714 Accesses

Abstract

Each cell type has a certain combination of receptors on their surface that makes them distinguishable from other kinds of cells. Scientists have taken advantage of the biological uniqueness of stem cell receptors and chemical properties of certain compounds to tag or “mark” cells. This chapter aims at obviating the discrepancies associated with phenotypic and functional characteristics of stem cells associated with the contemporary therapeutic sources of adult tissues/organs such as the bone marrow and subcutaneous fat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Friedenstein AJ. Stromal-hematopoietic interrelationships: Maximov’s ideas and modern models. Haematol Blood Transfus. 1989;32:159–67.

    CAS  PubMed  Google Scholar 

  2. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189(1):54–63.

    CAS  PubMed  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    CAS  PubMed  Google Scholar 

  4. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    CAS  PubMed  Google Scholar 

  5. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    CAS  PubMed  Google Scholar 

  6. Dhanasekaran M, Indumathi S, Rajkumar JS, Sudarsanam D. Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow. Cell Biochem Funct. 2013;31(1):20–9.

    CAS  PubMed  Google Scholar 

  7. Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res. 2006;9(1):31–5.

    CAS  PubMed  Google Scholar 

  8. Li YM, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, Limbert C, Seufert J, Kassem M, Schütze N, Jakob F, Ebert R. Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun. 2007;363(1):209–15.

    CAS  PubMed  Google Scholar 

  9. Weil BR, Abarbanell AM, Herrmann JL, Wang Y, Meldrum DR. High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):735–43.

    Google Scholar 

  10. Prunet-Marcassus B, Cousin B, Caton D. From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res. 2006;312(6):727–36.

    CAS  PubMed  Google Scholar 

  11. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3(5):705–13.

    CAS  PubMed  Google Scholar 

  12. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–8.

    CAS  PubMed  Google Scholar 

  14. Singh A, Patel J, Litbarg N, Gudehithlu KP, Sethupathi P, Arruda JA, Dunea G. Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell Tissue Res. 2008;332(1):81–8.

    CAS  PubMed  Google Scholar 

  15. Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, Gelmini S, Guasti D, Benvenuti S, Annunziato F, Bani D, Liotta F, Francini F, Perigli G, Serio M, Luconi M. Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J. 2009;23(10):3494–505.

    CAS  PubMed  Google Scholar 

  16. Toyoda M, Matsubara Y, Lin K, Sugimachi K, Furue M. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues. Cell Biochem Funct. 2009;27(7):440–7.

    CAS  PubMed  Google Scholar 

  17. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806.

    CAS  PubMed  Google Scholar 

  18. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;34(4):631–44.

    Google Scholar 

  19. Kinashi T, Spinger TA. Adhesion molecules in hematopoietic cells. Blood Cells. 1994;20(1):25–44.

    CAS  PubMed  Google Scholar 

  20. Kienstra KA, Hirschi KK. Vascular progenitor cell mobilization. Methods Mol Biol. 2012;904:155–64.

    CAS  PubMed  Google Scholar 

  21. Patterson C. The Ponzo effect: endothelial progenitor cells appear on the horizon. Circulation. 2003;107(24):2995–7.

    PubMed  Google Scholar 

  22. Tindle RW, Nicholas RA, Chan L, Campana D, Catovsky D, Birnie GD. A novel monoclonal antibody BI-3C5 recognises myeloblasts and non-B non-T lymphoblasts in acute leukaemias and CGL blast crises, and reacts with immature cells in normal bone marrow. Leuk Res. 1985;9(1):1–9.

    CAS  PubMed  Google Scholar 

  23. Andrews RG, Singer JW, Bernstein ID. Monoclonal antibody 12–8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood. 1986;67(3):842–5.

    CAS  PubMed  Google Scholar 

  24. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG- 1a cells. J Immunol. 1984;133(1):157–65.

    CAS  PubMed  Google Scholar 

  25. Katz FE, Tindle R, Sutherland DR, Greaves MF. Identification of a membrane glycoprotein associated with haemopoietic progenitor cells. Leuk Res. 1985;9(2):191–8.

    CAS  PubMed  Google Scholar 

  26. Watt SM, Karhi K, Gatter K, Furley AJ, Katz FE, Healy LE, Altass LJ, Bradley NJ, Sutherland DR, Levinsky R, et al. Distribution and epitope analysis of the cell membrane glycoprotein (HPCA-1) associated with human hemopoietic progenitor cells. Leukemia. 1987;1(5):417–26.

    CAS  PubMed  Google Scholar 

  27. Beschorner WE, Civin CI, Strauss LC. Localization of hematopoietic progenitor cells in tissue with the anti-My-10 monoclonal antibody. Am J Pathol. 1985;119(1):1–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Virts E, Barritt D, Siden E, Raschke WC. Murine mast cells and monocytes express distinctive sets of CD45 isoforms. Mol Immunol. 1997;34(16–17):1191–7.

    CAS  PubMed  Google Scholar 

  30. Kobari L, Giarratana MC, Pflumio F, Izac B, Coulombel L, Douay L. CD133+ cell selection is an alternative to CD34+ cell selection for ex vivo expansion of hematopoietic stem cells. J Hematother Stem Cell Res. 2001;10(2):273–81.

    CAS  PubMed  Google Scholar 

  31. Taieb N, Maresca M, Guo XJ, Garmy N, Fantini J, Yahi N. The first extra cellular domain of tumor stem cell marker CD 133 contains an antigenic ganglioside binding motif. Cancer Lett. 2009;278(2):164–73.

    CAS  PubMed  Google Scholar 

  32. Hilbe W, Dirnhofer S, Oberwasserlechner F, Schmid T, Gunsilius E, Hilbe G, Wöll E, Kähler CM. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol. 2004;57(9):965–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Cañizo MC, Lozano F, González-Porras JR, Barros M, López-Holgado N, Briz E, Sánchez-Guijo FM. Peripheral endothelial progenitor cells (CD133 +) for therapeutic vasculogenesis in a patient with critical limb ischemia. One year follow-up. Cytotherapy. 2007;9(1):99–102.

    PubMed  Google Scholar 

  34. Banu N, Deng B, Lyman SD, Avraham H. Modulation of haematopoietic progenitor development by FLT-3 ligand. Cytokine. 1999;11(9):679–88.

    CAS  PubMed  Google Scholar 

  35. Shah AJ, Smogorzewska EM, Hannum C, Crooks GM. Flt3 ligand induces proliferation of quiescent human bone marrow CD34 + CD38- cells and maintains progenitor cells in vitro. Blood. 1996;87(9):3563–70.

    CAS  PubMed  Google Scholar 

  36. Tang B, Mano H, Yi T, Ihle JN. Tec kinase associates with c-kit and is tyrosine phosphorylated and activated following stem cell factor binding. Mol Cell Biol. 1994;14(12):8432–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kawaguchi S. B-cell reconstitution by transplantation of B220+ CD117+ B-lymphoid progenitors into irradiated mice. Immunology. 2005;114(4):461–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Massa S, Balciunaite G, Ceredig R, Rolink AG. Critical role for c-kit (CD117) in T cell lineage commitment and early thymocyte development in vitro. Eur J Immunol. 2006;36(3):526–32.

    CAS  PubMed  Google Scholar 

  39. Mireskandari M, Shafaii A, Kayser G, Kayser K. Lack of CD117 and rare bcl-2 expression in stomach cancer by immunohistochemistry. An immunohistochemical study with review of the literature. Diagn Pathol. 2006;1:7.

    PubMed Central  PubMed  Google Scholar 

  40. Newman PJ, Berndt MC, Gorski J, White 2nd GC, Lyman S, Paddock C, Muller WA. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247(4947):1219–22.

    CAS  PubMed  Google Scholar 

  41. Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol. 2003;23(6):953–64.

    CAS  PubMed  Google Scholar 

  42. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow derived endothelial progenitor cells. EMBO J. 1999;18(14):3964–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–74.

    CAS  PubMed  Google Scholar 

  44. Owen ME, Friedenstein AJ. Stromal stem cells: marrow derived osteogenic precursors. Ciba Found Symp. 1988;136:42–60.

    CAS  PubMed  Google Scholar 

  45. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    CAS  PubMed  Google Scholar 

  46. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    CAS  PubMed  Google Scholar 

  47. Guillot-Delost M, Le Gouvello S, Mesel-Lemoine M, Cheraï M, Baillou C, Simon A, Levy Y, Weiss L, Louafi S, Chaput N, Berrehar F, Kerbrat S, Klatzmann D, Lemoine FM. Human CD90 identifies Th17/Tc17 T cell subsets that are depleted in HIV-infected patients. J Immunol. 2011;188(3):981–91.

    PubMed  Google Scholar 

  48. Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J. 2006;20(8):1045–54.

    CAS  PubMed  Google Scholar 

  49. Sanz-Rodriguez F, Guerrero-Esteo M, Botella LM, Banville D, Vary CP, Bernabéu C. Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem. 2004;279(31):32858–68.

    CAS  PubMed  Google Scholar 

  50. Gougos A, Letarte M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990;265:8361–8364.

    Google Scholar 

  51. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9.

    CAS  PubMed  Google Scholar 

  52. Arvilommi A-M, Salmi M, Airas L, Kalimo K, Jalkanen S. CD73 mediates lymphocyte binding to vascular endothelium in inflamed human skin. Eur J Immunol. 1997;27(1):248–54.

    CAS  PubMed  Google Scholar 

  53. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.

    PubMed  Google Scholar 

  54. Synnestvedt K, Furuta G, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP. Ecto-5’-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest. 2002;110(7):993–1002.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Bufler P, Steigler G, Schuchmann M, Hess S, Krüger C, Stelter F, Eckerskorn C, Schütt C, Engelmann H. Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur J Immunol. 1995;25(2):604–10.

    CAS  PubMed  Google Scholar 

  56. Durieux JJ, Vita N, Popescu O, Guette F, Calzada-Wack J, Munker R, Schmidt RE, Lupker J, Ferrara P, Ziegler-Heitbrock HW, et al. The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes. Eur J Immunol. 1994;24(9):2006–12.

    CAS  PubMed  Google Scholar 

  57. Stelter F, Phister M, Bernheiden M, Jack RS, Bufler P, Engelmann H, Schütt C. The myeloid differentiation antigen CD14 is N- and O-glycosylated: contribution of N-linked glycosylation to different soluble CD14 isoforms. Eur J Biochem. 1996;236(2):457–64.

    CAS  PubMed  Google Scholar 

  58. Schumann RR, Rietschel ET, Loppnow H. The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol. 1994;183(6):279–97.

    CAS  PubMed  Google Scholar 

  59. Verhasselt V, Buelens C, Willems F, De Groote D, Haeffner-Cavaillon N, Goldman M. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol. 1997;158(6):2919–25.

    CAS  PubMed  Google Scholar 

  60. Sugawara S, Sugiyama A, Nemoto E, Rikiishi H, Takada H. Heterogeneous expression and release of CD14 by human gingival fibroblasts: characterization and CD14-mediated interleukin-8 secretion in response to lipopolysaccharide. Inf Immun. 1998;66(7):3043–9.

    CAS  Google Scholar 

  61. Song PI, Park Y-M, Abraham T, Harten B, Zivony A, Neparidze N, Armstrong CA, Ansel JC. Human keratinocytes express functional CD14 and Toll-like receptor 4. J Invest Dermatol. 2002;119(2):424–32.

    CAS  PubMed  Google Scholar 

  62. Pugin J, Heumann ID, Thomsz A, Kravchenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ. CD14 is a pattern recognition receptor. Immunity. 1994;1(6):509–16.

    CAS  PubMed  Google Scholar 

  63. Larson R, Springer T. Structure and function of leucocyte integrins. Immunol Rev. 1990;114:181–217.

    CAS  PubMed  Google Scholar 

  64. Kawai TH, Shimauchi JW, Eastcott DJ, Smith DJ, Taubman MA. Antigen direction of specific T-cell clones into gingival tissues. Immunology. 1998;93(1):11–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Yusuf-Makagiansar H, Makagiansar IT, Hu Y, Siahaan TJ. Synergistic inhibitory activity of alpha and beta LFA1 peptides on LFA1/ICAM-1 interaction. Peptides. 2001;22(12):1955–62.

    CAS  PubMed  Google Scholar 

  66. Dorman JS, Bunker CH. HLA-DQ locus of the human leukocyte antigen complex and type 1 diabetes mellitus: a HuGE review. Epidemiol Rev. 2000;22(2):218–27.

    CAS  PubMed  Google Scholar 

  67. Cheadle WG. The human leukocyte antigens and their relationship to infection. Am J Surg. 1993;165(2A Suppl):75S–81.

    CAS  PubMed  Google Scholar 

  68. Aitman TJ, Todd JA. Molecular genetics of diabetes mellitus. Baillieres Clin Endocrinol Metab. 1995;9(3):631–56.

    CAS  PubMed  Google Scholar 

  69. Menconi F, Osman R, Monti MC, Greenberg DA, Concepcion ES, Tomer Y. Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis. Proc Natl Acad Sci U S A. 2010;107(39):16899–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Marthiens V, Kazanis T, Moss L, Long K, Ffrench-Constant C. Adhesion molecules in the stem cell niche – more than just staying in shape? J Cell Sci. 2010;123(Pt 10):1613–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ren G, Robert AI, Shi Y. Adhesion molecules: key players in mesenchymal stem cell-mediated immunosuppression. Cell Adh Migr. 2011;5(1):20–2.

    PubMed Central  PubMed  Google Scholar 

  72. Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y. Inflammatory cytokine-induced intercellular adhesion molecue-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010;184(5):2321–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Chothia C, Jones EY. The molecular structures of cell adhesion molecules. Annu Rev Biochem. 1997;66:823–62.

    CAS  PubMed  Google Scholar 

  74. Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ. Mesenchymal stem cells use integrin β1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell. 2007;18(8):2873–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kamata T, Puzon W, Takada Y. Identification of putative ligand binding sites within I domain of integrin a2b1 (VLA-2, CD49b/CD29). J Biol Chem. 1994;269(13):9659–63.

    CAS  PubMed  Google Scholar 

  76. Werr J, Xie X, Hedqvist P, Ruoslahti E, Lindbom L. Beta1 integrins are critically involved in neutrophil locomotion in extravascular tissue in vivo. J Exp Med. 1998;187:2091–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006;108(12):3938–44.

    PubMed  Google Scholar 

  78. Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Götz M. Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development. 2006;133(16):3245–54.

    CAS  PubMed  Google Scholar 

  79. Radakovits R, Barros CS, Belvindrah R, Patton B, Müller U. Regulation of radial glial survival by signals from the meninges. J Neurosci. 2009;29(24):7694–705.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004;18(22):2747–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Rose D. The role of the alpha4 integrin-paxillin interaction in regulating leukocyte trafficking. Exp Molec Med. 2006;38(3):191–5.

    CAS  Google Scholar 

  82. Kubes P, Niu XF, Smith CW, Kehrli Jr ME, Reinhardt PH, Woodman RC. A novel beta1-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration. FASEB J. 1995;9(11):1103.

    CAS  PubMed  Google Scholar 

  83. Oostendorp RA, Dörmer P. VLA-4-mediated interactions between normal human hematopoietic progenitors and stromal cells. Leuk Lymphoma. 1997;24(5–6):423–35.

    CAS  PubMed  Google Scholar 

  84. Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic α4 integrin expression. FASEB J. 2007;21(14):3917–27.

    CAS  PubMed  Google Scholar 

  85. Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, Lobb R. Direct expression cloning of vascular cell adhesion molecule-1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989;59(6):1203–11.

    CAS  PubMed  Google Scholar 

  86. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell. 1990;60(4):577–84.

    CAS  PubMed  Google Scholar 

  87. Rivera-Nieves J, Gorfu G, Ley K. Leukocyte adhesion molecules in animal models of inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(12):1715–35.

    PubMed Central  PubMed  Google Scholar 

  88. May MJ, Entwistle G, Humphries MJ, Ager A. VCAM-1 is a CS1 peptide-inhibitable adhesion molecule expressed by lymph node high endothelium. J Cell Sci. 1993;106(Pt 1):109–19.

    CAS  PubMed  Google Scholar 

  89. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest. 2004;84(5):607–17.

    CAS  PubMed  Google Scholar 

  90. Kaiserlian D, Rigal D, Abello J, Revillard JP. Expression, function and regulation of the intercellular adhesion molecule-1 (ICAM-1) on human intestinal epithelial cell lines. Eur J Immunol. 1991;21(10):2415–21.

    CAS  PubMed  Google Scholar 

  91. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    CAS  PubMed  Google Scholar 

  92. Zhu Y, Liu T, Song K, Fan X, Max X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664–75.

    CAS  PubMed  Google Scholar 

  93. Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Mol Pathol. 1999;52(4):189–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int. 2007;72(4):430–41.

    CAS  PubMed  Google Scholar 

  95. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.

    CAS  PubMed  Google Scholar 

  96. Arai F, Ohneda O, Miyamoto T, Zhang XQ, Suda T. Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med. 2002;195(12):1549–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. King J, Tan F, Mbeunkui F, Chambers Z, Cantrell S, Chen H, Alvarez D, Shevde LA, Ofori-Acquah SF. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer. Mol Cancer. 2010;9:266.

    PubMed Central  PubMed  Google Scholar 

  98. Swart GW. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol. 2002;81(6):313–21.

    CAS  PubMed  Google Scholar 

  99. Guzman-Rojas L, Rangel R, Salameh A, Edwards JK, Dondossola E, Kim YG, Saghatelian A, Giordano RJ, Kolonin MG, Staquicini FI, Koivunen E, Sidman RL, Arap W, Pasqualini R. Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci. 2012;109(5):1637–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Tani K, Ogushi F, Huang L, Kawano T, Tada H, Hariguchi N, Sone S. CD13/aminopeptidase N, a novel chemoattractant for T lymphocytes in pulmonary sarcoidosis. Am J Resp Crit Care Med. 2000;161(5):1636–42.

    CAS  PubMed  Google Scholar 

  101. Mina-Osorio P, Shapiro LH, Ortega E. CD13 in cell adhesion: aminopeptidase N (CD13) mediates homotypic aggregation of monocytic cells. J Leukoc Biol. 2006;79(4):719–30.

    CAS  PubMed  Google Scholar 

  102. Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 1987;236(4803):799–806.

    CAS  PubMed  Google Scholar 

  103. McKay K, Moore PC, Smoller BR, Hiatt KM. Association between natural killer cells and regression in melanocytic lesions. Hum Pathol. 2011;42(12):1960–4.

    CAS  PubMed  Google Scholar 

  104. Prowse AB, McQuade LR, Bryant KJ, Marcal H, Gray PP. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res. 2007;6(9):3796–807.

    CAS  PubMed  Google Scholar 

  105. Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules. 2012;17(6):6196–236.

    CAS  PubMed  Google Scholar 

  106. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7.

    CAS  PubMed  Google Scholar 

  107. Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, Solter D. Stage-specific embryonic antigens (SSEA-3 and −4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 1983;2(12):2355–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Shevinsky LH, Knowles BB, Damjanov I, Solter D. Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell. 1982;30(3):697–705.

    CAS  PubMed  Google Scholar 

  109. Schöler HR, Dressler GR, Balling R, Rohdewohld H, Gruss P. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 1990;9(7):2185–95.

    PubMed Central  PubMed  Google Scholar 

  110. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372–376.

    CAS  PubMed  Google Scholar 

  111. Pesce M, Schöler HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19(4):271–8.

    CAS  PubMed  Google Scholar 

  112. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med. 2009;1(2):228–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Shi W, Wang H, Pan G, Geng Y, Guo Y, Pei D. Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem. 2006;281(33):23319–25.

    CAS  PubMed  Google Scholar 

  114. Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development. 2006;133(6):1193–201.

    CAS  PubMed  Google Scholar 

  115. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol. 2005;7(2):165–71.

    CAS  PubMed  Google Scholar 

  116. Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 2004;36(2):279–99.

    CAS  PubMed  Google Scholar 

  117. Sladek N. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Molec Toxicol. 2003;17(1):7–23.

    CAS  Google Scholar 

  118. Moreb JS. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 2008;3(4):237–46.

    CAS  PubMed  Google Scholar 

  119. Goodell MA, McKinney-Freeman S, Camargo FD. Isolation and characterization of side population cells. Mol Biol. 2005;293:343–52.

    Google Scholar 

  120. Guo Y, Lübbert M, Engelhardt M. CD34− Hematopoietic stem cells: current concepts and controversies. Stem Cells. 2003;21(1):15–20.

    CAS  PubMed  Google Scholar 

  121. Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells. 2002;20(1):11–20.

    CAS  PubMed  Google Scholar 

  122. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999;401(6751):390–4.

    CAS  PubMed  Google Scholar 

  123. Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86(17–18):631–7.

    CAS  PubMed  Google Scholar 

  124. Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells. 2006;24(11):2319–45.

    CAS  PubMed  Google Scholar 

  125. Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics – recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther. 2007;82(3):252–64.

    CAS  PubMed  Google Scholar 

  126. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106.

    CAS  PubMed  Google Scholar 

  127. Hattan N, Kawaguchi H, Ando K, Kuwabara E, Fujita J, Murata M, Suematsu M, Mori H, Fukuda K. Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res. 2005;65(2):334–44.

    CAS  PubMed  Google Scholar 

  128. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafé M, Nadal-Ginard B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res. 2005;96(1):127–37.

    CAS  PubMed  Google Scholar 

  129. Sun Y, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Med J. 2007;120(9):771–6.

    CAS  Google Scholar 

  130. Heissig B, Hattori K, Dias S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109(5):625–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Kopp HG, Avecilla ST, Hooper AT, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda). 2005;20:349–56.

    CAS  Google Scholar 

  132. Muller P, Pfeiffer P, Koglin J, Schäfers HJ, Seeland U, Janzen I, Urbschat S, Böhm M. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation. 2002;106(1):31–5.

    PubMed  Google Scholar 

  133. Schatteman G. Are circulating CD133+ cells biomarkers of vascular disease? Arterioscl Thromb Vasc Biol. 2005;25(2):270–1.

    PubMed  Google Scholar 

  134. Zengin E, Sarper N, Türker G, Corapçioğlu F, Etuş V. Late haemorrhagic disease of the newborn. Annals of Tropical Paediatrics: International Child Health. 2006;26(3):225–31.

    Google Scholar 

  135. Lai L, Alaverdi N, Maltais L, Morse 3rd HC. Mouse cell surface antigens: nomenclature and immunophenotyping. J Immunol. 1998;160(8):3861–8.

    CAS  PubMed  Google Scholar 

  136. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 2000;97(7):3213–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Dhanasekaran M, Indumathi S, Kanmani A, Poojitha R, Revathy KM, Rajkumar JS, Sudarsanam D. Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow. Cytotechnology. 2012;64(5):497–509.

    CAS  PubMed Central  Google Scholar 

  138. Haynesworth SE, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. bone. 1992;13(1):81–8.

    CAS  PubMed  Google Scholar 

  139. Boxall SA, Jones E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012;2012:975871.

    PubMed Central  PubMed  Google Scholar 

  140. Simmons DL, Satterthwaite AB, Tenen DG, Seed B. Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol. 1992;148(1):267–71.

    CAS  PubMed  Google Scholar 

  141. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78(1):55–62.

    CAS  PubMed  Google Scholar 

  142. Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood. 2007;109(3):1298–306.

    CAS  PubMed  Google Scholar 

  143. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007;109(4):1743–51.

    CAS  PubMed  Google Scholar 

  144. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    CAS  PubMed  Google Scholar 

  145. Jung EM, Kwon O, Kwon KS, Cho YS, Rhee SK, Min JK, Oh DB. Evidences for correlation between the reduced VCAM-1 expression and hyaluronan synthesis during cellular senescence of human mesenchymal stem cells. Biochem Biophysl Res Commun. 2011;404(1):463–9.

    CAS  Google Scholar 

  146. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P, McGonagle D. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46(12):3349–60.

    PubMed  Google Scholar 

  147. Martins AA, Paiva A, Morgado JM, Gomes A, Pais ML. Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry. Transplant Proc. 2009;41(3):943–6.

    CAS  PubMed  Google Scholar 

  148. Bardin N, George F, Mutin M, Brisson C, Horschowski N, Francés V, Lesaule G, Sampol J. S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen. Tissue Antigens. 1996;48(5):531–9.

    CAS  PubMed  Google Scholar 

  149. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Bqhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.

    CAS  PubMed  Google Scholar 

  150. De Ugarte DA, Alphonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK. Differential expression of stem cell mobilization associated-molecules on multi lineage cells from adipose tissue and bone marrow. Immunol Lett. 2003;89(2–3):267–70.

    PubMed  Google Scholar 

  151. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    CAS  PubMed  Google Scholar 

  152. Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow and adipose tissues derived human mesenchymal stem cells (MSCs) into three mesenchymal lineages. Stem Cells. 2006;25(3):750–60.

    PubMed  Google Scholar 

  153. Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362–9.

    PubMed  Google Scholar 

  154. Jurgens W, Oedayrajsingh-Varma M, Helder M, Zandiehdoulabi B, Schouten TE, Kuik DJ, Ritt MJ, van Milligen FJ. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tiss Res. 2008;332(3):415–26.

    Google Scholar 

  155. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell–associated markers. Stem Cells. 2006;24(2):376–85.

    PubMed  Google Scholar 

  156. Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005;87(1):125–8.

    CAS  PubMed  Google Scholar 

  157. Gronthos S, Zannettino A, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Science. 2003;116(Pt 9):1827–35.

    CAS  PubMed  Google Scholar 

  158. Daher SR, Jhonstone BH, Phinney DG, March KL. Adipose stromal/stem cells: basic and translational advances: the IFATS collection. Stem Cells. 2008;26(10):2664–5.

    PubMed  Google Scholar 

  159. Mizuno H. Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. Curr Opin Mol Ther. 2010;12(4):442–9.

    CAS  PubMed  Google Scholar 

  160. Ebrahimian TG, Pozoulet F, Squiban C, Buard V, André M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R. Cell therapy based on adipose tissue-derived stromal cells promote physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29(4):503–10.

    CAS  PubMed  Google Scholar 

  161. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    PubMed  Google Scholar 

  162. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129(1):118–29.

    PubMed  Google Scholar 

  163. Parker AM, Katz AJ. Adipose derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther. 2006;6(6):567–78.

    CAS  PubMed  Google Scholar 

  164. Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res. 2003;412:196–212.

    PubMed  Google Scholar 

  165. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.

    CAS  PubMed  Google Scholar 

  166. Boquest AC, Brinchmann JE, Collas P. Isolation of stromal stem cells from human adipose tissue. Meth Molec Biol. 2006;325:35–46.

    Google Scholar 

  167. Papayannopoulou T, Priestley GV, Nakamoto B. Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood. 1998;91(7):2231–9.

    CAS  PubMed  Google Scholar 

  168. Simmons PJ, Masinovsky B, Longenecker BM, Berenson R, Torok-Storb B, Gallatin WM. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood. 1992;80(2):388–95.

    CAS  PubMed  Google Scholar 

  169. Steidl U, Kronenwett R, Haas R. Trans-endothelial migration Anti-sense oligonucleotides Intercellular adhesion molecule 1 Monocytes Inflammation. Ann Hematol. 2000;79(8):414–23.

    CAS  PubMed  Google Scholar 

  170. Südhoff T, Söhngen D. Circulating endothelial adhesion molecules (sE-selectin, sVCAM-1 and sICAM-1) during rHuG-CSF-stimulated stem cell mobilization. J Hematother Stem Cell Res. 2002;11(1):147–51.

    PubMed  Google Scholar 

  171. Dhanasekaran M, Indumathi S, Poojitha R, Kanmani A, Rajkumar JS, Sudarsanam D. Plasticity and banking potential of cultured adipose tissue derived mesenchymal stem cells. Cell Tissue Bank. 2013;14(2):303–15.

    CAS  PubMed  Google Scholar 

  172. Dhanasekaran M, Indumathi S, Mishra R, Rajkumar JS, Sudarsanam D. Unravelling the retention of proliferation and differentiation potency in extensive culture of human subcutaneous fat derived mesenchymal stem cells in different media. Cell Prolif. 2012;45(6):516–26.

    CAS  PubMed  Google Scholar 

  173. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anatomic Rec A Discov Mol Cell Evol Biol. 2003;272(1):398–402.

    CAS  Google Scholar 

  174. Fujioka S, Matsuzawa Y, Tokunaga K, Kawamoto T, Kobatake T, Keno Y, Kotani K, Yoshida S, Tarui S. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. Int J Obes. 1991;15(12):853–9.

    CAS  PubMed  Google Scholar 

  175. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33(11):1402–16.

    CAS  PubMed  Google Scholar 

  176. McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Di Halvorsen Y, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24(5):1246–53.

    CAS  PubMed  Google Scholar 

  177. Potdar PD, Sutar JP. Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues. J Stem Cells Regen Med. 2010;6(1):26–35.

    PubMed Central  PubMed  Google Scholar 

  178. Dhanasekaran M, Somasundaram I, Janvikula RS, Dorairaj S. Long term culture optimization of human omentum fat derived mesenchymal stem cells. Cell Biol Int. 2012;36(11):1029–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanasekaran Marappagounder Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Somasundaram, I., Harikrishnan, R., Mishra, R., Sankaran, R.J., Marappagounder, D. (2014). Surface Antigenic Profiles of Stem Cells from the Human Bone Marrow, Subcutaneous Fat, and Omentum Fat. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics