Skip to main content

Extensive Characterization of Stem Cells Derived from Skin

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures

Abstract

A stem cell is defined by two main parameters: the ability to have many division cycles maintaining the undifferentiated state (self-renewal) and the ability to differentiate into all mature cell types (unlimited potential). The authors describe the various types of stem cells and their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  2. Herberts CA, Kwa M, Hermsen H. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29.

    Article  PubMed Central  PubMed  Google Scholar 

  3. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  Google Scholar 

  4. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod. 2003;18(7):1489–93.

    Article  PubMed  Google Scholar 

  5. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp D, Tukun A, Uckan D, Can A. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25(2):319–31.

    Article  CAS  PubMed  Google Scholar 

  6. Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Conway S, Orkin SH, Yoder MC, Mikkola HKA. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell. 2008;2(3):252–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Orciani M, Emanuelli M, Martino C, Pugnaloni A, Tranquilli AL, Di Primio R. Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells. Int J Immunopathol Pharmacol. 2008;21(3):595–602.

    CAS  PubMed  Google Scholar 

  8. Orciani M, Morabito C, Emanuelli M, Guarnieri S, Sartini D, Giannubilo SR, Di Primio R, Tranquilli AL, Mariggiò MA. Neurogenic potential of mesenchymal-like stem cells from human amniotic fluid: the influence of extracellular growth factors. J Biol Regul Homeost Agents. 2011;25(1):115–30.

    CAS  PubMed  Google Scholar 

  9. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.

    CAS  PubMed  Google Scholar 

  10. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96(8):2655–63.

    CAS  PubMed  Google Scholar 

  11. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tuli R, Seghatoleslami MR, Tuli S, Wang ML, Hozack WJ, Manner PA, Danielson KG, Tuan RS. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol Biotechnol. 2003;23(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  13. Chunmeng S, Tianmin C. Skin: a promising reservoir for adult stem cell populations. Med Hypotheses. 2004;62(5):683–8.

    Article  PubMed  Google Scholar 

  14. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol. 2003;160(6):909–18.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50(3):817–27.

    Article  PubMed  Google Scholar 

  16. Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res. 2003;287(2):289–300.

    Article  CAS  PubMed  Google Scholar 

  17. Bosch P, Musgrave D, Ghivizzani S, Latterman C, Day CS, Huard J. The efficiency of muscle-derived cell-mediated bone formation. Cell Transplant. 2000;9(4):463–70.

    CAS  PubMed  Google Scholar 

  18. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396–402.

    Article  CAS  PubMed  Google Scholar 

  19. In ’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845–52.

    PubMed  Google Scholar 

  20. Orciani M, Campanati A, Salvolini E, Lucarini G, Di Benedetto G, Offidani A, Di Primio R. The mesenchymal stem cell profile in psoriasis. Br J Dermatol. 2011;165(3):585–92.

    Article  CAS  PubMed  Google Scholar 

  21. Campanati A, Orciani M, Gorbi S, Regoli F, Di Primio R, Offidani A. Effect of biologic therapies targeting tumour necrosis factor-α on cutaneous mesenchymal stem cells in psoriasis. Br J Dermatol. 2012;167(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  22. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.

    Article  PubMed  Google Scholar 

  23. Salvolini E, Orciani M, Vignini A, Mattioli-Belmonte M, Mazzanti L, Di Primio R. Skin-derived mesenchymal stem cells (S-MSCs) induce endothelial cell activation by paracrine mechanisms. Exp Dermatol. 2010;19(9):848–50.

    Article  PubMed  Google Scholar 

  24. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabé-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, Kaplan DR, Labosky PA, Rafuse V, Hui CC, Miller FD. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–93.

    Article  CAS  PubMed  Google Scholar 

  25. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118(5):635–48.

    Article  CAS  PubMed  Google Scholar 

  26. Scuteri A, Miloso M, Foudah D, Orciani M, Cavaletti G, Tredici G. Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? Curr Stem Cell Res Ther. 2011;6(2):82–92.

    Article  CAS  PubMed  Google Scholar 

  27. Shih DT, Lee DC, Chen SC, Tsai RY, Huang CT, Tsai CC, Shen EY, Chiu WT. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells. 2005;23(7):1012–20.

    Article  CAS  PubMed  Google Scholar 

  28. Toma JG, McKenzie IA, Bagli D, Miller FD. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 2005;23(6):727–37.

    Article  CAS  PubMed  Google Scholar 

  29. Raposio E, Guida C, Baldelli I, Curto M, Fiocca R, Kunkl A, Robello G, Santi PL. Characterization of multipotent cells from human adult hair follicles. Toxicol In Vitro. 2007;21(2):320–3.

    Article  CAS  PubMed  Google Scholar 

  30. Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, Chandran S. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet. 2004;364(9429):172–8.

    Article  CAS  PubMed  Google Scholar 

  31. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116(6):769–78.

    Article  CAS  PubMed  Google Scholar 

  32. Dominici M, Le Blanc K, Mueller I. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci. 2004;45(6):1743–51.

    Article  PubMed  Google Scholar 

  34. Orciani M, Mariggiò MA, Morabito C, Di Benedetto G, Di Primio R. Functional characterization of calcium-signaling pathways of human skin-derived mesenchymal stem cells. Skin Pharmacol Physiol. 2010;23(3):124–32.

    Article  CAS  PubMed  Google Scholar 

  35. Salvolini E, Lucarini G, Zizzi A, Orciani M, Di Benedetto G, Di Primio R. Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide. Arch Dermatol Res. 2010;302(5):367–74.

    Article  CAS  PubMed  Google Scholar 

  36. Jeon YK, Jang YH, Yoo DR, Kim SN, Lee SK, Nam MJ. Mesenchymal stem cells’ interaction with skin: wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen. 2010;18(6):655–61.

    Article  PubMed  Google Scholar 

  37. Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A. Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets. 2009;10(12):1245–54.

    Article  CAS  PubMed  Google Scholar 

  38. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford Univ. Press; 2007.

    Google Scholar 

  39. Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009;461(7263):537–41.

    Article  CAS  PubMed  Google Scholar 

  40. Orciani M, Gorbi S, Benedetti M, Di Benedetto G, Mattioli-Belmonte M, Regoli F, Di Primio R. Free Radic Biol Med. 2010;49(5):830–8.

    Article  CAS  PubMed  Google Scholar 

  41. Chen ZX, Pervaiz S. Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ. 2007;14(9):1617–27.

    Article  CAS  PubMed  Google Scholar 

  42. Clément MV, Stamenkovic I. Superoxide anion is a natural inhibitor of FAS-mediated cell death. EMBO J. 1996;15(2):216–25.

    PubMed Central  PubMed  Google Scholar 

  43. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA, Rohrschneider LR, Griffin JD. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol. 1999;19(11):7473–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446–51.

    Article  CAS  PubMed  Google Scholar 

  45. Shi X, Zhang Y, Zheng J, Pan J. Reactive oxygen species in cancer stem cells. Antioxid Redox Signal. 2012;16(11):1215–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Katsuyama M. NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles. J Pharmacol Sci. 2010;114(2):134–46.

    Article  CAS  PubMed  Google Scholar 

  47. Piccoli C, Ria R, Scrima R, Cela O, D’Aprile A, Boffoli D, Falzetti F, Tabilio A, Capitanio N. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem. 2005;280(28):26467–76.

    Article  CAS  PubMed  Google Scholar 

  48. Urao N, Inomata H, Razvi M, Kim HW, Wary K, McKinney R, Fukai T, Ushio-Fukai M. Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res. 2008;103(2):212–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. van Os R, Robinson SN, Drukteinis D, Sheridan TM, Mauch PM. Respiratory burst of neutrophils is not required for stem cell mobilization in mice. Br J Haematol. 2000;111(2):695–9.

    Article  PubMed  Google Scholar 

  50. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–82.

    Article  CAS  PubMed  Google Scholar 

  51. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8(1):59–71.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Li TS, Marbán E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells. 2010;28(7):1178–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Matsuda T, Tanaka H, Reyes HM, Richter HM, Hanumadass M, Shimazaki S, Matsuda H, Nyhus LM. Antioxidant therapy using high dose vitamin C: reduction of post burn resuscitation fluid volume requirements. World J Surg. 1995;19(2):287–91.

    Article  CAS  PubMed  Google Scholar 

  54. LaLonde C, Nayak U, Hennigan J, Demling H. Excessive liver oxidant stress causes mortality in response to burn injury combined with endotoxin and is prevented with antioxidants. J Burn Care Rehabil. 1997;18(3):187–92.

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka H, Matsuda H, Shimazaki S, Hanumadass M, Matsuda T. Reduced resuscitation fluid volume for second-degree burns with delayed initiation of ascorbic acid therapy. Arch Surg. 1997;132(2):158–61.

    Article  CAS  PubMed  Google Scholar 

  56. Bertin-Maghit M, Goudable J, Dalmas E, Steghens JP, Bouchard C, Gueugniaud PY, Petit P, Delafosse B. Time course of oxidative stress after major burns. Intensive Care Med. 2000;26(6):800–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Di Benedetto M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Benedetto, G. et al. (2014). Extensive Characterization of Stem Cells Derived from Skin. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics