Skip to main content

Adipose-Derived Stem and Regenerative Cells: Harvesting, Processing, and Administration

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures

Abstract

The discovery that the largest population of stem cells resides in our deep fat layer has created a symbiosis in fat and stem cell research. Laboratory investigation and clinical medical use of these cells require optimal harvesting, processing, and purification techniques. With regard to clinical use, there is an added concern of the administration method implemented to create the highest degree of cellular viability. Outcome measures both clinically, besides aesthetic appearance, and in the research laboratory require some collaborative acceptance of the most sensitive and cost-effective measurements. This enables researchers and clinicians alike to compare their results. Understanding all the variables in the harvesting, processing, storage, and administration of autologous fat and stem cell transfer and discovering the “best” techniques will pave the way for future discoveries of the role of stem cells in all fields of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuber F. Fettransplantation. Bericht über die Verhandlungen der Deutschen Gesellschaft für Chirurgie. Zentralbl Chir. 1893;22:66.

    Google Scholar 

  2. Neuhof H. The transplantation of tissues. New York: D. Appleton and Company; 1923.

    Google Scholar 

  3. Hollander E. Plastik und Medizin. Stuttgart: Ferdinand Enke; 1912.

    Google Scholar 

  4. Miller JJ, Popp JC. Fat hypertrophy after autologous fat transfer. Ophthal Plast Reconstr Surg. 2002;18(3):228–31.

    Article  PubMed  Google Scholar 

  5. Fischer A, Fischer G. First surgical treatment for molding body’s cellulite with three 5 mm incisions. Bull Int Acad Cosmet Surg. 1976;62:305–6.

    Google Scholar 

  6. Illouz YG. Body contouring by lipolysis: a 5-year experience with over 3000 cases. Plast Reconstr Surg. 1983;72(5):591–7.

    Article  CAS  PubMed  Google Scholar 

  7. Klein JA. The tumescent technique for liposuction surgery. Am J Cosmet Surg. 1987;4:263–7.

    Google Scholar 

  8. Klein J. Tumescent technique. In: Klein J, editor. Tumescent anesthesia & microcannular liposuction. St Louis: Mosby, Inc.; 2000.

    Google Scholar 

  9. Silkiss RZ, Baylis HI. Autogenous fat grafting by injection. Ophthal Plast Reconstr Surg. 1987;3(2):71–5.

    Article  CAS  PubMed  Google Scholar 

  10. Chajchir A, Benzaquen I, Arellano A. Comparative study on lipoinjection and other methods. Med Cutan Ibero Lat Am. 1988;16(6):489–96.

    CAS  PubMed  Google Scholar 

  11. Teimourian B. Repair of soft-tissue contour deficit by means of semiliquid fat graft. Plast Reconstr Surg. 1986;78(1):123–4.

    Article  CAS  PubMed  Google Scholar 

  12. Illouz YG. The fat cell “graft”: a new technique to fill depressions. Plast Reconstr Surg. 1986;78(1):122–3.

    Article  CAS  PubMed  Google Scholar 

  13. Carraway JH, Mellow CG. Syringe aspiration and fat concentration: a simple technique for autologous fat injection. Ann Plast Surg. 1990;24(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lewis CM. Transplantation of autologous fat. Plast Reconstr Surg. 1991;88(6):1110–1.

    Article  CAS  PubMed  Google Scholar 

  15. Ersek RA, Chang P, Salisbury MA. Lipo-layering of autologous fat: an improved technique with promising results. Plast Reconstr Surg. 1998;101(3):820–6.

    Article  CAS  PubMed  Google Scholar 

  16. Guerrerosantos J. Long-term outcome of autologous fat transplantation in aesthetic facial recontouring: sixteen years of experience with 1936 cases. Clin Plast Surg. 2000;27(4):515–43.

    CAS  PubMed  Google Scholar 

  17. Coleman SR. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg. 1995;19(5):421–5.

    Article  CAS  PubMed  Google Scholar 

  18. Coleman SR. Structural fat grafting. St Louis: Quality Medical Pub; 2004.

    Google Scholar 

  19. Coleman S. Hand rejuvenation with structural fat grafting. Plast Reconstr Surg. 2002;110(7):1731–43.

    Article  PubMed  Google Scholar 

  20. Coleman SR. Structural fat grafting. In: Nahai F, editor. The art of aesthetic surgery: principles and techniques. St Louis: Quality Medical Pub.; 2005. p. 289–363.

    Google Scholar 

  21. International Society of Plastic Aesthetic Surgery. ISAPS International Survey on Aesthetic/Cosmetic Procedures Performed in 2009. www.prnewswire.com/news-releases/worldwide-plastic-surgery-statistics-available. Accessed 11 July 2013.

  22. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multi-lineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  23. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multi-potent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Masuda T, Furue M, Matsuda T. Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng. 2004;10(11–12):1672–83.

    Article  CAS  PubMed  Google Scholar 

  25. Miranville A, Heeschen C, Sengenès C, Curat CA, Busse R, Bouloumié A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  26. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.

    Article  PubMed  Google Scholar 

  27. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    Article  PubMed  Google Scholar 

  28. Sclafani A, Saman M. Platelet-rich fibrin matrix for facial plastic surgery. Facial Plast Surg Clin North Am. 2012;20(2):177–86.

    Article  PubMed  Google Scholar 

  29. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208(1):64–76.

    Article  CAS  PubMed  Google Scholar 

  30. Fraser J, Schreiber R, Strem B, et al. Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Pract Cardiovasc Med. 2006;3 Suppl 1:S33–7.

    Article  CAS  PubMed  Google Scholar 

  31. Suga H, Eto H, Aoi N, Kato H, Araki J, Doi K, Higashino T, Yoshimura K. Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg. 2010;126(6):1911–23.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32(1):48–55.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Housman TS, Lawrence N, Mellen BG, George MN, Filippo JS, Cerveny KA, DeMarco M, Feldman SR, Fleischer AB. The safety of liposuction: results of a national survey. Dermatol Surg. 2002;28(11):971–8.

    PubMed  Google Scholar 

  34. Rohrich RJ, Sorokin ES, Brown SA. In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg. 2004;113(1):391–5.

    Article  PubMed  Google Scholar 

  35. Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende AR, Grechi B, Gehlen D, Machado DC. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg. 2008;122(2):614–8.

    Article  CAS  PubMed  Google Scholar 

  36. Shoshani O, Berger J, Fodor L, Ramon Y, Shupak A, Kehat I, Gilhar A, Ullmann Y. The effect of lidocaine and adrenaline on the viability of injected adipose tissue: an experimental study in nude mice. J Drugs Dermatol. 2005;4(3):311–6.

    PubMed  Google Scholar 

  37. Kim IH, Yang JD, Lee DG, Chung HY, Cho BC. Evaluation of centrifugation technique and effect of epinephrine on fat cell viability in autologous fat injection. Aesthet Surg J. 2009;29(1):35–9.

    Article  PubMed  Google Scholar 

  38. Moore Jr JH, Kolaczynski JW, Morales LM, Considine RV, Pietrzkowski Z, Noto PF, Caro JF. Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg. 1995;19(4):335–9.

    Article  PubMed  Google Scholar 

  39. Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg. 2001;27(9):819–26.

    CAS  PubMed  Google Scholar 

  40. Pu LL, Cui X, Fink BF, Cibull ML, Gao D. The viability of fatty tissues within adipose aspirates after conventional liposuction: a comprehensive study. Ann Plast Surg. 2005;54(3):288–92.

    CAS  PubMed  Google Scholar 

  41. Pu LL, Coleman SR, Cui X, Ferguson Jr RE, Vasconez HC. Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg. 2008;122(3):932–7.

    Article  CAS  PubMed  Google Scholar 

  42. Gir P, Brown SA, Oni G, Kashefi N, Mojallal A, Rohrich RJ. Fat grafting: evidence-based review on autologous fat harvesting, processing, reinjection, and storage. Plast Reconstr Surg. 2012;130(1):249–58.

    Article  CAS  PubMed  Google Scholar 

  43. Troell R. Suction liposuction (SAL), water-jet assisted (WAL) and ultrasound assisted (UAL) techniques in facial fat transfer with 25 patients in each group. Presented at the annual meeting of the American Academy of Cosmetic Surgery, Phoenix, 12–16 Jan 2011.

    Google Scholar 

  44. Rohrich RJ, Morales DE, Krueger JE, Ansari M, Ochoa O, Robinson Jr J, Beran SJ. Comparative lipoplasty analysis of in vivo-treated adipose tissue. Plast Reconstr Surg. 2000;105(6):2152–8.

    Article  CAS  PubMed  Google Scholar 

  45. Schafer M, Hicok K, Mills D, Cohen SR, Chao JJ. Acute adipocyte viability after third-generation ultrasound-assisted liposuction. Aesthet Surg J. 2013;33(5):698–704.

    Article  PubMed  Google Scholar 

  46. Rubin JP, Marra KG. Adipose stem cell therapy for soft tissue reconstruction. Lancet. 2013;382(9898):1077–9.

    Google Scholar 

  47. Ueberreiter K, von Finckenstein JG, Cromme F, Herold C, Tanzella U, Vogt PM. BEAULI™ – a new and easy method for large-volume fat grafts. Handchir Mikrochir. 2010;42(6):379–85.

    Article  CAS  Google Scholar 

  48. Leong DT, Hutmacher DW, Chew FT, Lim TC. Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. J Dermatol Sci. 2005;37:169–76.

    Article  PubMed  Google Scholar 

  49. Ferguson RE, Cui X, Fink BF, Vasconez HC, Pu LL. The viability of autologous fat grafts harvested with the LipiVage system: a comparative study. Ann Plast Surg. 2008;60(5):594–7.

    Article  CAS  PubMed  Google Scholar 

  50. Fodor P, Cimino W, Watson J, Tahernia A. Suction-assisted lipoplasty: physics, optimization, and clinical verification. Aesthet Surg J. 2005;25(3):234–46.

    Article  PubMed  Google Scholar 

  51. Ozsoy Z, Kul Z, Bilir A. The role of cannula diameter in improved adipocyte viability: a quantitative analysis. Aesthet Surg J. 2006;26(3):287–9.

    Article  CAS  PubMed  Google Scholar 

  52. Erdim M, Tezel E, Numanoglu A, Sav A. The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. J Plast Reconstr Aesthet Surg. 2009;62(9):1210–4.

    Article  PubMed  Google Scholar 

  53. Crawford JL, Hubbard BA, Colbert SH, Puckett CL. Fine tuning lipoaspirate viability for fat grafting. Plast Reconstr Surg. 2010;126(4):1342–8.

    Article  CAS  PubMed  Google Scholar 

  54. Nagy M, Vanek P. A multicenter, prospective, randomized, single-blind, controlled clinical trial comparing VASER-assisted lipoplasty and suction-assisted lipoplasty. Plast Reconstr Surg. 2012;129(4):681e–9.

    Article  CAS  PubMed  Google Scholar 

  55. Coleman S. Structural fat grafting. St Louis: Quality Medical Publishing; 2004.

    Google Scholar 

  56. Matsumoto D, Shigeura T, Sato T, Inoue K, Suga H, Kato H, Aoi N, Murase S, Gonda K, Yoshimura K. Influences of preservation at various temperatures on liposuction aspirates. Plast Reconstr Surg. 2007;120(6):1510–7.

    Article  CAS  PubMed  Google Scholar 

  57. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshimura K. Cell-assisted lipotransfer: supportive use of human adipose derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12(12):3375–82.

    Article  CAS  PubMed  Google Scholar 

  58. Butterwick KJ, Bevin AA, Iyer S. Fat transplantation using fresh versus frozen fat: a side-by-side two-hand comparison pilot study. Dermatol Surg. 2006;32(5):640–4.

    CAS  PubMed  Google Scholar 

  59. Khater R, Atanassova P, Anastassov Y, Pellerin P, Martinot-Duquennoy V. Clinical and experimental study of autologous fat grafting after processing by centrifugation and serum lavage. Aesthetic Plast Surg. 2009;33(1):37–43.

    Article  PubMed  Google Scholar 

  60. Botti G, Pascali M, Botti C, Bodog F, Cervelli V. A clinical trial in facial fat grafting: filtered and washed versus centrifuged fat. Plast Reconstr Surg. 2011;127(6):2464–73.

    Article  CAS  PubMed  Google Scholar 

  61. Ferraro GA, De Francesco F, Tirino V, Cataldo C, Rossano F, Nicoletti G, D’Andrea F. Effects of a new centrifugation method on adipose cell viability for autologous fat grafting. Aesthetic Plast Surg. 2011;35(3):341–8.

    Article  PubMed  Google Scholar 

  62. Boschert MT, Beckert BW, Puckett CL, Concannon MJ. Analysis of lipocyte viability after liposuction. Plast Reconstr Surg. 2002;109(2):761–5.

    Article  PubMed  Google Scholar 

  63. Ramon Y, Shoshani O, Peled IJ, Gilhar A, Carmi N, Fodor L, Risin Y, Ullmann Y. Enhancing the take of injected adipose tissue by a simple method for concentrating fat cells. Plast Reconstr Surg. 2005;115(1):197–201.

    CAS  PubMed  Google Scholar 

  64. Rose Jr JG, Lucarelli MJ, Lemke BN, Dortzbach RK, Boxrud CA, Obagi S, Patel S. Histologic comparison of autologous fat processing methods. Ophthal Plast Reconstr Surg. 2006;22(3):195–200.

    Article  PubMed  Google Scholar 

  65. Smith P, Adams Jr WP, Lipschitz AH, Chau B, Sorokin E, Rohrich RJ, Brown SA. Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg. 2006;117(6):1836–44.

    Article  CAS  PubMed  Google Scholar 

  66. Kurita M, Matsumoto D, Shigeura T, Sato K, Gonda K, Harii K, Yoshimura K. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast Reconstr Surg. 2008;121(3):1033–41.

    Article  CAS  PubMed  Google Scholar 

  67. Xie Y, Zheng D, Li Q, Chen Y, Lei H, Pu LL. The effect of centrifugation on viability of fat grafts: an evaluation with the glucose transport test. J Plast Reconstr Aesthet Surg. 2010;63(3):482–7.

    Article  PubMed  Google Scholar 

  68. Pulsfort AK, Wolter TP, Pallua N. The effect of centrifugal forces on viability of adipocytes in centrifuged lipoaspirates. Ann Plast Surg. 2011;66(3): 292–5.

    Article  CAS  PubMed  Google Scholar 

  69. Minn KW, Min KH, Chang H, Kim S, Heo EJ. Effects of fat preparation methods on the viabilities of autologous fat grafts. Aesthetic Plast Surg. 2010;34(5): 626–31.

    Article  PubMed  Google Scholar 

  70. Condé-Green A, de Amorim NF, Pitanguy I. Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Reconstr Aesthet Surg. 2010;63(8):1375–81.

    Article  PubMed  Google Scholar 

  71. Condé-Green A, Baptista LS, de Amorin NF, de Oliveira ED, da Silva KR, Pedrosa Cda S, Borojevic R, Pitanguy I. Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet Surg J. 2010;30(2):249–55.

    Article  PubMed  Google Scholar 

  72. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.

    Article  CAS  PubMed  Google Scholar 

  73. Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, Tamura T, Toyoshima Y, Sugimachi K, Toyoda M, Marc H, Douglas A. Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy. 2008;10(4):417–26.

    Article  CAS  PubMed  Google Scholar 

  74. Coleman SR, Saboeiro AP. Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg. 2007;119(3):775–85.

    Article  CAS  PubMed  Google Scholar 

  75. Carpaneda CA, Ribeiro MT. Percentage of graft viability versus injected volume in adipose autotransplants. Aesthetic Plast Surg. 1994;18(1):17–9.

    Article  CAS  PubMed  Google Scholar 

  76. Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg. 2006;118(3 Suppl):121S–8.

    Article  CAS  PubMed  Google Scholar 

  77. Wolter TP, von Heimburg D, Stoffels I, Groeger A, Pallua N. Cryopreservation of mature human adipocytes: in vitro measurement of viability. Ann Plast Surg. 2005;55(4):408–13.

    Article  CAS  PubMed  Google Scholar 

  78. MacRae JW, Tholpady SS, Ogle RC, Morgan RF. Ex vivo fat graft preservation: effects and implications of cryopreservation. Ann Plast Surg. 2004;52(3):281–2.

    Article  PubMed  Google Scholar 

  79. Moscatello DK, Dougherty M, Narins RS, Lawrence N. Cryopreservation of human fat for soft tissue augmentation: viability requires use of cryoprotectant and controlled freezing and storage. Dermatol Surg. 2005;31(11 Pt 2):1506–10.

    Article  CAS  PubMed  Google Scholar 

  80. Pu LL, Coleman SR, Cui X, Ferguson Jr RE, Vasconez HC. Cryopreservation of autologous fat grafts harvested with the Coleman technique. Ann Plast Surg. 2010;64(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  81. Cervelli V, Gentile P, Scioli MG, Grimaldi M, Casciani CU, Spagnoli LG, Orlandi A. Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng Part C Methods. 2009;15(4):625–34.

    Article  CAS  PubMed  Google Scholar 

  82. Panetta N, Gupta D, Kwan M, Wan DC, Commons GW, Longaker MT. Tissue harvest by means of suction-assisted or third-generation ultrasound-assisted lipoaspiration has no effect on osteogenic potential of human adipose-derived stromal cells. Plast Reconstr Surg. 2009;124(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  83. Aiba-Kojima E, Tsuno NH, Inoue K, Matsumoto D, Shigeura T, Sato T, Suga H, Kato H, Nagase T, Gonda K, Koshima I, Takahashi K, Yoshimura K. Characterization of wound drainage fluids as a source of soluble factors associated with wound healing: comparison with platelet-rich plasma and potential use in cell culture. Wound Repair Regen. 2007;15(4): 511–20.

    Article  PubMed  Google Scholar 

  84. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, Kitagawa Y, Murohara T. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  85. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1): 77–85.

    Article  CAS  PubMed  Google Scholar 

  86. Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am J Physiol Endocrinol Metab. 2004;286(4):E577–88.

    Article  CAS  PubMed  Google Scholar 

  87. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, Rydén M, Frisén J, Arner P. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

    Article  CAS  PubMed  Google Scholar 

  88. Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, Araki J, Yoshimura K. Characterization of adipose tissue structure and cellular components: differences between aspirated adipose tissue and excised adipose tissue. Plast Reconstr Surg. 2009;124(4):1087–97.

    Article  CAS  PubMed  Google Scholar 

  89. Le TT, Yue S, Cheng JX. Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J Lipid Res. 2010;51(11):3091–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Hosoda T, D’Amario D, Cabral-Da-Silva MC, Zheng H, Padin-Iruegas ME, Ogorek B, Ferreira-Martins J, Yasuzawa-Amano S, Amano K, Ide-Iwata N, Cheng W, Rota M, Urbanek K, Kajstura J, Anversa P, Leri A. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci U S A. 2009;106(40): 17169–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Yoshimura K, Eto H, Kato H, Doi K, Suga H. Adipose stem cells: from liposuction to adipose tissue engineering. In: Illouz YG, Sterodimas A, editors. Adipose stem cells and regenerative medicine. Berlin: Springer; 2011. p. 67–81.

    Chapter  Google Scholar 

  92. Urasaki Y, Johlfs MG, Fiscus RR, Le TT. Imaging immune and metabolic cells of visceral adipose tissues with multimodal nonlinear optical microscopy. PLoS One. 2012;7(6):e38418. 1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Suga H, Matsumoto D, Inoue K, Shigeura T, Eto H, Aoi N, Kato H, Abe H, Yoshimura K. Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg. 2008;122:113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Troell M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Troell, R.J. (2014). Adipose-Derived Stem and Regenerative Cells: Harvesting, Processing, and Administration. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics