Skip to main content

Optical Transitions in Highly Charged Ions for Detection of Variations in the Fine-Structure Constant

  • Chapter
  • First Online:
Fundamental Physics in Particle Traps

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 256))

Abstract

In this review, we explore a class of optical transitions in highly charged ions that have very high sensitivity to variation of the fine-structure constant, \(\alpha \). An atomic clock based on such a transition could place strong limits on \(\alpha \)-variation, and could be sensitive enough to corroborate astronomical studies that suggest cosmological spatial variations in \(\alpha \). We discuss how to find the ions which have these optical transitions, the source of the high sensitivity to \(\alpha \)-variation, and some scaling laws that suggest that a highly charged ion clock could have better systematics than existing singly-ionized trapped ion clocks. Finally we give an overview of atomic spectra calculations as applied in highly charged ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The variation of \(\alpha \) is unrelated to the well-known “running” of \(\alpha \) at high energies, rather, it is a variation of \(\alpha \) at zero-momentum transfer across space and/or time.

References

  1. R. Li, K. Gibble, K. Szymaniec, Improved accuracy of the NPL-CsF\(_2\) primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts. Metrologia 48, 283 (2011)

    Article  ADS  Google Scholar 

  2. V. Gerginov, N. Nemitz, S. Weyers, R. Schröder, D. Griebsch, R. Wynands, Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia 47, 65 (2010)

    Article  ADS  Google Scholar 

  3. T.P. Heavner, T.E. Parker, J.H. Shirley, P.D. Kunz, S.R. Jefferts, in PTTI Conference proceedings (VA, Rastin, 2010), p. 457

    Google Scholar 

  4. J. Guéna, M. Abgrall, D. Rovera, P. Rosenbusch, M.E. Tobar, Ph Laurent, A. Clarion, S. Bize, Improved tests of local position invariance using \(^{87}\)Rb and \(^{133}\)Cs fountains. Phys. Rev. Lett. 109, 080801 (2012)

    Article  ADS  Google Scholar 

  5. T.L. Nicholson, M.J. Martin, J.R. Williams, B.J. Bloom, M. Bishof, M.D. Swallows, S.L. Campbell, J. Ye, Comparison of two independent Sr optical clocks with \(1\times 10^{-17}\) stability at \(10^3\)s. Phys. Rev. Lett. 109, 230801 (2012). doi: 10.1103/PhysRevLett.109.230801

    Article  ADS  Google Scholar 

  6. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy Al\(^+\) optical clocks. Phys. Rev. Lett. 104, 070802 (2010). doi: 10.1103/PhysRevLett.104.070802

    Article  ADS  Google Scholar 

  7. W.J. Marciano, Time variation of the fundamental ’constants’ and kaluza-klein theories. Phys. Rev. Lett. 52, 489 (1984)

    Article  ADS  Google Scholar 

  8. P. Langacker, G. Segré, M.J. Strassler, Implications of gauge unification for time variation of the fine structure constant. Phys. Lett. B 528, 121 (2002)

    Article  ADS  Google Scholar 

  9. X. Calmet, H. Fritzsch, The cosmological evolution of the nucleon mass and the electroweak coupling constants. Eur. Phys. J. C 24, 639 (2002)

    Article  Google Scholar 

  10. C. Wetterich, Probing quintessence with time variation of couplings. J. Cosmol. Astropart. Phys. 2003 (2003). JCAP10 002

    Google Scholar 

  11. T. Dent, M. Fairbairn, Time-varying coupling strengths, nuclear forces and unification. Nucl. Phys. B 653, 256 (2003)

    Article  ADS  Google Scholar 

  12. M.P. Savedoff, Physical constants in extra-galactic nebulae. Nature 178, 688 (1956)

    Article  ADS  Google Scholar 

  13. J.N. Bahcall, W.L.W. Sargent, M. Schmidt, Astrophys. J. 149, L11 (1967)

    Article  ADS  Google Scholar 

  14. Y. Fenner, M.T. Murphy, B.K. Gibson, On variations in the fine-structure constant and stellar pollution of quasar absorption systems. Mon. Not. R. Astron. Soc. 358, 468 (2005)

    Article  ADS  Google Scholar 

  15. H. Chand, P. Petitjean, R. Srianand, B. Aracil, Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample. Astron. Astrophys. 430, 47 (2005)

    Article  ADS  Google Scholar 

  16. V.A. Dzuba, V.V. Flambaum, J.K. Webb, Space-time variation of physical constants and relativistic corrections in atoms. Phys. Rev. Lett. 82, 888 (1999)

    Article  ADS  Google Scholar 

  17. M.T. Murphy, J.K. Webb, V.V. Flambaum, Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra. Mon. Not. R. Astron. Soc. 345, 609(2003). doi:10.1046/j.1365-8711.2003.06970.x

  18. M.T. Murphy, V.V. Flambaum, J.K. Webb, V.A. Dzuba, J.X. Prochaska, A. M. Wolfe, Constraining variations in the fine-structure constant, quark masses and the strong interaction. Lect. Notes Phys. 648, 131 (2004). doi:10.1007/978-3-540-40991-5_9

  19. J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater, J.D. Barrow, Search for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884 (1999). doi: 10.1103/PhysRevLett.82.884

    Google Scholar 

  20. J.K. Webb, J.A. King, M.T. Murphy, V.V. Flambaum, R.F. Carswell, M.B. Bainbridge, Indications of a spatial variation of the fine structure constant. Phys. Rev. Lett. 107, 191101 (2011). doi:10.1103/PhysRevLett.107.191101

    Google Scholar 

  21. J.A. King, J.K. Webb, M.T. Murphy, V.V. Flambaum, R.F. Carswell, M.B. Bainbridge, M.R. Wilczynska, F.E. Koch, Spatial variation in the fine-structure constant new results from VLT/UVES. Mon. Not. R. Astron. Soc. 422, 3370 (2012). doi: 10.1111/j.1365-2966.2012.20852.x

    Google Scholar 

  22. J.C. Berengut, V.V. Flambaum, Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena. Europhys. Lett. 97, 20006 (2012). doi: 10.1209/0295-5075/97/20006

  23. G. Hinshaw, J.L. Weiland, R.S. Hill, N. Odegard, D. Larson, C.L. Bennett, J. Dunkley, B. Gold, M.R. Greason, N. Jarosik, E. Komatsu, M.R. Nolta, L. Page, D.N. Spergel, E. Wollack, M. Halpern, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E.L. Wright, Five-year wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. Ser. 180, 225 (2009)

    Google Scholar 

  24. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Frequency ratio of Al\(^+\) and Hg\(^+\) single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808 (2008). doi: 10.1126/science.1154622

  25. R.E. Marrs, S.R. Elliott, D.A. Knapp, Production and trapping of hydrogenlike and bare uranium ions in an electron beam ion trap. Phys. Rev. Lett. 72, 4082 (1994). doi:10.1103/PhysRevLett.72.4082

    Google Scholar 

  26. V. Mäckel, R. Klawitter, G. Brenner, J.R. Crespo López-Urrutia, J. Ullrich, Laser spectroscopy on forbidden transitions in trapped highly charged Ar\(^{13+}\) ions. Phys. Rev. Lett. 107, 143002 (2011)

    Article  ADS  Google Scholar 

  27. M. Schwarz, O.O. Versolato, A. Windberger, F.R. Brunner, T. Ballance, S.N. Eberle, J. Ullrich, P.O. Schmidt, A.K. Hansen, A.D. Gingell, M. Drewsen, J.R. Crespo López-Urrutia, Cryogenic linear Paul trap for cold highly charged ion experiments. Rev. Sci. Instrum. 83, 083115 (2012)

    Article  ADS  Google Scholar 

  28. O.O. Versolato, M. Schwarz, A. Windberger, J. Ullrich, P.O. Schmidt, M. Drewsen, J.R. Crespo López-Urrutia, Cold highly charged ions in a cryogenic Paul trap. Hyp. Int. 214, 189 (2013)

    Google Scholar 

  29. A. Windberger, M. Schwarz, O.O. Versolato, T. Baumann, H. Bekker, L. Schmöger, A.K. Hansen, A.D. Gingell, L. Klosowski, S. Kristensen, P.O. Schmidt, J. Ullrich, M. Drewsen, J.R. Crespo López-Urrutia, Coulomb crystals in a cryogenic paul trap for sympathetic cooling of molecular ions and highly charged ions. AIP Conf. Proc. 1521, 250 (2013)

    Article  ADS  Google Scholar 

  30. I.I. Sobelman, Introduction to the Theory of Atomic Spectra (Pergamon Press, NEw York, 1972)

    Google Scholar 

  31. I.B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Taylor & Francis Group, London, 1991)

    Google Scholar 

  32. L.L. Foldy, Fermi-segre formula. Phys. Rev. 111, 1093 (1958). doi: 10.1103/PhysRev.111.1093

    Google Scholar 

  33. Z.R. Iwinski, Generalized fermi-segre formula. Phys. Rev. A 22, 1358 (1980). doi: 10.1103/PhysRevA.22.1358

  34. V.A. Dzuba, V.V. Flambaum, J.K. Webb, Calculations of the relativistic effects in many-electron atoms and space-time variation of fundamental constants. Phys. Rev. A 59, 23 (1999). doi: 10.1103/PhysRevA.59.230

  35. V.A. Dzuba, V.V. Flambaum, M.G. Kozlov, M. Marchenko, \(\alpha \) Dependence of transition frequencies for ions Si II, Cr II, Fe II, Ni II, and Zn II. Phys. Rev. A 66, 022501 (2002)

    Article  ADS  Google Scholar 

  36. J.C. Berengut, V.A. Dzuba, V.V. Flambaum, Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions. Phys. Rev. Lett. 105, 120801 (2010). doi: 10.1103/PhysRevLett.105.120801

    Google Scholar 

  37. J.C. Berengut, V.A. Dzuba, V.V. Flambaum, A. Ong, Highly charged ions with E1, M1, and E2 transitions within laser range. Phys. Rev. A 86, 022517 (2012). doi: 10.1103/PhysRevA.86.022517

  38. V.A. Dzuba, A. Derevianko, V.V. Flambaum, Ion clock and search for the variation of the fine structure constant using optical transitions in Nd\(^{13+}\) and Sm\(^{15+}\), arXiv: 1208.4157 (2012).

    Google Scholar 

  39. J.C. Berengut, V.A. Dzuba, V.V. Flambaum, A. Ong, Electron-hole transitions in multiply charged ions for precision laser spectroscopy and searching for variations in \(\alpha \). Phys. Rev. Lett. 106, 210802 (2011). doi: 10.1103/PhysRevLett.106.210802

    Google Scholar 

  40. J.D. Gillaspy, Highly charged ions. J. Phys. B: At. Mol. Opt. Phys. 34, R93–R130 (2001)

    Article  ADS  Google Scholar 

  41. W.R. Johnson, Atomic Structure Theory (Springer, Berlin, 2007), pp. 133

    Google Scholar 

  42. H.F. Beyer, V.P. Shevelko, Introduction to the Physics of Highly Charged Ions (CRC Press, London, 2002), pp. 245–246

    Google Scholar 

  43. A. Derevianko, V.A. Dzuba, V.V. Flambaum, Highly charged ions as a basis of optical Aaomic clockwork of exceptional accuracy. Phys. Rev. Lett. 109, 180801 (2012)

    Article  ADS  Google Scholar 

  44. V.A. Dzuba, V.V. Flambaum, M.G. Kozlov, Combination of the many-body perturbation theory with the configuration-interaction method. Phys. Rev. A 54, 3948 (1996). doi: 10.1103/PhysRevA.54.3948

  45. J.C. Berengut, V.A. Dzuba, V.V. Flambaum, A. Ong, Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant. Phys. Rev. Lett. 109, 070802 (2012). doi: 10.1103/PhysRevLett.109.070802

    Google Scholar 

  46. J.C. Berengut, V.V. Flambaum, M.G. Kozlov, Calculation of isotope shifts and relativistic shifts in C I, C II, C III, and C IV. Phys. Rev. A 73, 012504 (2006)

    Article  ADS  Google Scholar 

  47. J.C. Berengut, V.V. Flambaum, M.G. Kozlov, Calculation of isotope shifts and relativistic shifts in C I, C II, C III, and C IV. Phys. Rev. A 72, 04450 (2005)

    Article  Google Scholar 

  48. J.C. Berengut, V.V. Flambaum, M.G. Kozlov, Isotope shift calculations in Ti II. J. Phys. B 41, 235702 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ong, A., Berengut, J., Flambaum, V. (2014). Optical Transitions in Highly Charged Ions for Detection of Variations in the Fine-Structure Constant. In: Quint, W., Vogel, M. (eds) Fundamental Physics in Particle Traps. Springer Tracts in Modern Physics, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45201-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45201-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45200-0

  • Online ISBN: 978-3-642-45201-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics