Skip to main content

High-Precision Mass Measurements of Radionuclides with Penning Traps

  • Chapter
  • First Online:
Fundamental Physics in Particle Traps

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 256))

Abstract

The mass of an atom is directly related to the binding energy of all its constituents. Thus, it provides information about all the interactions inside the atom. High-precision mass measurements hence allow studies of fundamental interactions and are of great importance in many different fields in physics. The masses of radionuclides provide information on their stability and their structure and are therefore of particular interest for nuclear structure investigations and as input for nucleosynthesis models in nuclear astrophysics. Penning trap mass spectrometry provides masses of radionuclides with unprecedented accuracies on the order of \(10^{-8}\) and can nowadays be applied even to nuclides with short half-lives and low production rates. Utilizing advanced ion manipulation techniques radionuclides from essentially all elements produced in a broad range of nuclear reactions can be accessed. In this chapter the standard procedures of on-line Penning trap mass spectrometry are introduced and some representative examples of recent mass measurements are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)

    ADS  Google Scholar 

  2. D. Lunney, J.M. Pearson, C. Thibault, Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021 (2003)

    ADS  Google Scholar 

  3. S. Rainville, J.K. Thompson, D.E. Pritchard, An ion balance for ultra-high-precision atomic mass measurements. Science 303, 334 (2004)

    ADS  Google Scholar 

  4. R.S. Van Dyck Jr., S.L. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinberg, Ultraprecise atomic mass measurement of the \(\alpha \) particle and\(^4\) He. Phys. Rev. Lett. 92, 220802 (2004)

    Google Scholar 

  5. W. Shi, M. Redshaw, E.G. Myers, Atomic masses of \(^{32,33}\)S, \(^{84,86}\)Kr, and \(^{129,132}\)Xe with uncertainties below 0.1 ppb. Phys. Rev. A 72, 022510 (2005)

    ADS  Google Scholar 

  6. G. Gabrielse et al., Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)

    ADS  Google Scholar 

  7. I.S. Towner, J. Hardy, The evaluation of V\(_{ud}\) and its impact on the unitarity of the Cabibbo-Kobayash-i-Maskawa quark-mixing matrix. Rep. Prog. Phys. 73, 046301 (2010)

    ADS  Google Scholar 

  8. J. Britz, A. Pape, M.S. Antony, Coefficients of the isobaric mass equation and their correlations with various nuclear parameters. At. Data Nucl. Data Tables 69, 125 (1998)

    ADS  Google Scholar 

  9. W. Heisenberg, Über den Bau der Atomkerne. Z. Phys. 77, 1 (1932)

    ADS  MathSciNet  Google Scholar 

  10. E.P. Wigner, in Proceedings of the Robert A. Welch Conferences on Chemical Research, vol 1 (Robert A. Welch Foundation, Houston, 1957), p. 67

    Google Scholar 

  11. O. Sorlin, M.-G. Porquet, Evolution of the N = 28 shell closure: a test bench for nuclear forces. Physica Scripta T152, 014003 (2013)

    ADS  Google Scholar 

  12. I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013)

    ADS  Google Scholar 

  13. W. Noertershaeuser, T. Neff, R. Sanchez, I. Sick, Charge radii and ground state structure of lithium isotopes: Experiment and theory reexamined. Phys. Rev. C 84, 024307 (2011)

    ADS  Google Scholar 

  14. Z. Patyk, A. Sobiczewski, Ground-state properties of the heaviest nuclei analyzed in a multidimensional deformation space. Nucl. Phys. A 533, 132 (1991)

    ADS  Google Scholar 

  15. E. Minaya Ramirez et al., Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012)

    Google Scholar 

  16. M. Thoennessen, Reaching the limits of nuclear stability. Rep. Prog. Phys. 67, 1187 (2004)

    ADS  Google Scholar 

  17. M. Pfützner, M. Karny, L.V. Grigorenko, K. Riisager, Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567 (2012)

    ADS  Google Scholar 

  18. R.G. Lovas, R.J. Liotta, A. Insolia, K. Varga, D.S. Delion, Microscopic theory of cluster radioactivity. Phys. Rep. 294, 265 (1998)

    ADS  Google Scholar 

  19. H. Schatz, The importance of nuclear masses in the astrophysical rp-process. Int. J. Mass Spectrom. 251, 293 (2006)

    ADS  Google Scholar 

  20. H. Schatz et al., rp-process nucleosynthesis at extreme temperature and density conditions. Phys. Rep. 294, 167 (1998)

    ADS  Google Scholar 

  21. F.-K. Thielemann et al., Operation of the r-process and cosmochronology. Phys. Rep. 227, 269 (1993)

    ADS  Google Scholar 

  22. F. Käppeler, The origin of the heavy elements: The s process. Prog. Part. Nucl. Phys. 43, 419 (1999)

    ADS  Google Scholar 

  23. S.A. Eliseev, YuN Novikov, K. Blaum, Search for resonant enhancement of neutrinoless double-electron capture by high-precision Penning-trap mass spectrometry. J. Phys. G 39, 124003 (2012)

    ADS  Google Scholar 

  24. J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal, M. Sore, The search for neutrinoless double beta decay. Riv. Nuovo Cim. 35, 29 (2012)

    Google Scholar 

  25. J. Wolf for the KATRIN collaboratio, The KATRIN neutrino mass experiment. Nucl. Instrum. Meth. A 623, 442 (2010)

    Google Scholar 

  26. G. Audi et al., The AME 2012 atomic mass evaluation. Chin. Phys. C 36(12), 1603–2014 (2012)

    Google Scholar 

  27. G. Audi, The history of nuclidic masses and of their evaluation. Int. J. Mass Spectrom. 251, 85 (2006)

    ADS  Google Scholar 

  28. J.J. Thomson, Cathode rays. Phil. Mag. 3, 293 (1897)

    Google Scholar 

  29. J.J. Thomson, On the masses of the ions in gases at low pressures. Phil. Mag. 5, 547 (1899)

    Google Scholar 

  30. J.J. Thomson, On rays of positive electricity. Phil. Mag. 13, 561 (1907)

    MATH  Google Scholar 

  31. J.J. Thomson, Further experiments on positive rays. Phil. Mag. 24, 209 (1912)

    Google Scholar 

  32. J.J. Thomson, Multiply-Charged atoms. Phil. Mag. 24, 668 (1912)

    Google Scholar 

  33. F.W. Aston, Mass Spectra and Isotopes, 2nd edn. (Edward Arnold and Co., London, 1942)

    MATH  Google Scholar 

  34. A.J. Dempster, The energy content of the heavy nuclei. Phys. Rev. 53, 869 (1938)

    ADS  Google Scholar 

  35. J. Mattauch, A double-focusing mass spectrograph and the masses of N15 and O18. Phys. Rev. 50, 617 (1936)

    ADS  Google Scholar 

  36. R. Klapisch, R. Prieels, C. Thibault, A.M. Poskanzer, C. Rigaud, E. Roeckl, On-line mass-spectrometric measurement of the masses of neutron-rich sodium isotopes. Phys. Rev. Lett. 31, 118 (1973)

    ADS  Google Scholar 

  37. E. Kugler, The ISOLDE facility. Hyperfine Int. 129, 23 (2000)

    ADS  Google Scholar 

  38. L.G. Smith, C.C. Damm, Mass synchrometer. Rev. Sci. Instr. 27, 638 (1956)

    ADS  Google Scholar 

  39. D. Lunney, D. Vieira, G. Audi et al., Mass measurements of the shortest-lived nuclides a la MISTRAL. Int. J. Mass Spectrom. 251, 286 (2006)

    ADS  Google Scholar 

  40. C. Gaulard, C. Bachelet, G. Audi et al., Mass measurements of the exotic nuclides \(^{11}\)Li and \(^{11,12}\)Be performed with the Mistral spectrometer. Nucl. Phys. A 826, 1 (2009)

    ADS  Google Scholar 

  41. G. Gärtner, E. Klempt, A direct determination of the proton-electron mass ratio. Z. Physik A 287, 1 (1978)

    ADS  Google Scholar 

  42. G. Bollen, P. Dabkiewicz, P. Egelhof, T. Hilberath, H. Kalinowsky, F. Kern, H. Schnatz, L. Schweikhard, H. Stolzenberg, R.B. Moore, H.-J. Kluge, G.M. Temmer, G. Ulm, and the ISOLDE Collaboration, First absolute mass measurements of short-lived isotopes. Hyperfine Interact. 38, 793 (1987)

    Google Scholar 

  43. M. Mukherjee, D. Beck, K. Blaum, G. Bollen, J. Dilling, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, S. Schwarz, L. Schweikhard, C. Yazidjian, ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived nuclides. Eur. Phys. J. A 35, 1 (2008)

    ADS  Google Scholar 

  44. M. Smith et al., First Penning-trap mass measurement of the exotic Halo nucleus \(^{11}\)Li. Phys. Rev. Lett. 101, 202501 (2008)

    ADS  Google Scholar 

  45. R. Ringle et al., High-precision Penning trap mass measurements of \(^{37,38}\)Ca and their contributions to conserved vector current and isobaric mass multiplet equation. Phys. Rev. C 75, 055503 (2007)

    ADS  Google Scholar 

  46. J. Clark et al., Improvements in the injection system of the Canadian Penning trap mass spectrometer. Nucl. Instrum. Methods B 204, 487 (2003)

    ADS  Google Scholar 

  47. T. Eronen et al., JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification. Eur. Phys. J. A 48, 46 (2012)

    ADS  Google Scholar 

  48. M. Block et al., Towards direct mass measurements of nobelium at SHIPTRAP. Eur. Phys. J. D 45, 39 (2007)

    ADS  Google Scholar 

  49. G. Bollen et al., Beam cooling at the low-energy-beam and ion-trap facility at NSCL/MSU. Nucl. Instrum. Methods A 532, 203 (2004)

    ADS  Google Scholar 

  50. J. Dilling et al., Mass measurements on highly charged radioactive ions, a new approach to high precision with TITAN. Int. J. Mass. Spectrom. 251, 198 (2006)

    ADS  Google Scholar 

  51. J. Ketelaer et al., TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instrum. Meth. A 594, 162 (2008)

    ADS  Google Scholar 

  52. V.S. Kolhinen et al., MLLTRAP: A Penning trap facility for high-accuracy mass measurements. Nucl. Instrum. Meth. B 266, 4547 (2008)

    ADS  Google Scholar 

  53. D. Rodriguez et al., MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR. Eur. Phys. J. ST 183, 1 (2010)

    Google Scholar 

  54. A.E. Cameron, D.F. Eggers Jr, An ion ‘velocitron’. Rev. Sci. Instr. 19, 605 (1948)

    ADS  Google Scholar 

  55. W.R. Plass et al., Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities. Nucl. Instrum. Meth. B 266, 4560 (2008)

    ADS  Google Scholar 

  56. P. Schury et al., Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions. Eur. Phys. J. A 42, 343 (2009)

    ADS  Google Scholar 

  57. R. Wolf et al., A multi-reflection time-of-flight mass separator for isobaric purification of radioactive ion beams. Hyperfine Int. 199, 115 (2011)

    ADS  Google Scholar 

  58. R. Wolf et al., On-line separation of short-lived nuclei by a multi-reflection time-of-flight device. Nucl. Instrum. Meth. A 686, 82 (2012)

    ADS  Google Scholar 

  59. B. Franzke, The heavy ion storage and cooler ring project ESR at GSI. Nucl. Instrum. Meth. B 24/25, 18–25 (1987)

    Google Scholar 

  60. B. Franzke, H. Geissel, G. Münzenberg, Mass and lifetime measurements of exotic nuclei in storage rings. Mass Spectrom. Rev. 27, 428 (2008)

    Google Scholar 

  61. YuA Litvinov, H. Geissel, R. Knöbel, B. Sun, H. Xu, Direct Mass Measurements of Exotic Nuclei in Storage Rings. Acta Physica Polonica B 41, 511 (2010)

    Google Scholar 

  62. U. Koester, Intense radioactive-ion beams produced with the ISOL method. Eur. Phys. J. A 15, 255 (2002)

    ADS  Google Scholar 

  63. V.N. Fedoseyev, G. Huber, U. Koster, J. Lettry, V.I. Mishin, H. Ravn, V. Sebastian, The ISOLDE laser ion source for exotic nuclei. Hyperfine Int. 127, 409 (2000)

    ADS  Google Scholar 

  64. M. Huyse, R. Raabe, Radioactive ion beam physics at the cyclotron research centre Louvain-la-Neuve. J. Phys. G 38, 024001 (2011)

    ADS  Google Scholar 

  65. P.G. Bricault, M. Dombsky, P.W. Schmor, G. Stanford, Radioactive ion beams facility at TRIUMF. Nucl. Instrum. Meth. B 126, 231 (1997)

    ADS  Google Scholar 

  66. A. Navin, F. de Oliveira Santos, P. Roussel-Chomaz, O. Sorlin, Nuclear structure and reaction studies at SPIRAL. J. Phys. G 38, 024004 (2011)

    Google Scholar 

  67. J. Arje et al., The ion guide isotope separator on-line, IGISOL. Nucl. Instrum. Meth. A 247, 431 (1986)

    ADS  Google Scholar 

  68. J. Äystö, T. Eronen, A. Jokinen, A. Kankainen, I.D. Moore, H. Penttilä(eds.), An IGISOL Portrait—selected contributions. Eur. Phys. J. A 48 (2012)

    Google Scholar 

  69. H. Sakurai, RI beam factory project at RIKEN. Nucl. Phys. A 805, 526c (2008)

    ADS  Google Scholar 

  70. H. Geissel et al., The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Meth. B 70, 286 (1992)

    ADS  Google Scholar 

  71. D.J. Morrissey, B.M. Sherrill, M. Steiner, A. Stolz, I. Wiedenhöver, Commissioning the A1900 projectile fragment separator. Nucl. Instrum. Meth. B 204, 90 (2003)

    ADS  Google Scholar 

  72. S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733 (2000)

    ADS  Google Scholar 

  73. A.V. Yeremin, The kinematic separator VASSILISSA performance and experimental results. Nucl. Instrum. Meth. A 350, 608 (1994)

    ADS  Google Scholar 

  74. Yu. Ts, Oganessian, Heaviest nuclei from \(^{48}\)Ca-induced reactions. J. Phys. G 34, R165 (2007)

    Google Scholar 

  75. V. Ninov, K.E. Gregorich, C.A. McGrath, The Berkeley Gas-filled separator. AIP Conf. Proc. 455, 704 (1998)

    ADS  Google Scholar 

  76. K. Morita et al., RIKEN isotope separator on-line GARIS/IGISOL. Nucl. Instrum. Meth. B 70, 220 (1992)

    ADS  Google Scholar 

  77. M. Leino et al., Gas-filled recoil separator for studies of heavy elements. Nucl. Instrum. Meth. B 99, 653 (1995)

    ADS  Google Scholar 

  78. A. Semchenkov et al., The TransActinide separator and chemistry apparatus (TASCA) at GSI optimization of ion-optical structures and magnet designs. Nucl. Instrum. Meth. B 266, 4153 (2008)

    Google Scholar 

  79. G. Savard, St Becker, G. Bollen, H.-J. Kluge, R.B. Moore, L. Schweikhard, H. Stolzenberg, U. Wiess, A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158, 247–252 (1991)

    ADS  Google Scholar 

  80. C.N. Davids, D. Peterson, A compact high-resolution isobar separator for the CARIBU project. Nucl. Instrum. Meth. B 266, 4449 (2008)

    ADS  Google Scholar 

  81. F. Herfurth, Segmented linear RFQ traps for nuclear physics. Nucl. Instrum. Meth. B 204, 587 (2008)

    ADS  Google Scholar 

  82. G. Savard et al., Large radio-frequency gas catchers and the production of radioactive nuclear beams. J. Phys. Conf. Ser. 312, 052004 (2011)

    ADS  Google Scholar 

  83. M. Wada et al., Slow RI-beams from projectile fragment separators. Nucl. Instrum. Meth. B 204, 570 (2003)

    ADS  Google Scholar 

  84. L. Weissman et al., First extraction tests of the NSCL gas cell. Nucl. Phys. A 746, 655 (2004)

    ADS  Google Scholar 

  85. J.B. Neumayr et al., The ion-catcher device for SHIPTRAP. Nucl. Inst. Meth. B 244, 489 (2005)

    ADS  Google Scholar 

  86. Yu. Kudryavtsev et al., Dual chamber laser ion source at LISOL. Nucl. Inst. Meth. B 267, 2908 (2009)

    ADS  Google Scholar 

  87. S. Schwarz, RF ion carpets: the electric field, the effective potential, operational parameters and an analysis of stability. Int. J. Mass Spectrom. 299, 71 (2011)

    ADS  Google Scholar 

  88. M. Ranjan et al., New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation. Europhys. Lett. 96, 52001 (2011)

    ADS  Google Scholar 

  89. C. Droese et al., GSI Scientific Report 2012

    Google Scholar 

  90. I. Katayama et al., Cyclotron ion guide for energetic radioactive nuclear ions. Hyperfine Int. 115, 165 (1998)

    ADS  Google Scholar 

  91. G. Bollen, D.J. Morrissey, S. Schwarz, A study of gas-stopping of intense energetic rare isotope beams. Nucl. Inst. Meth. A 550, 27 (2005)

    ADS  Google Scholar 

  92. G. Bollen et al., Efficient and fast thermalization of Rare Isotope Beam from projectile fragmentation. The cyclotron gas stopper project at the NSCL. Eur. Phys. J. Spec. Top. 150, 265 (2007)

    Google Scholar 

  93. F. Herfurth, A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Meth. A 469, 254 (2001)

    ADS  Google Scholar 

  94. A. Nieminen et al., Beam cooler for low-energy radioactive ions. Nucl. Instrum. Meth. A 469, 244 (2001)

    ADS  Google Scholar 

  95. S. Schwarz et al., A second-generation ion beam buncher and cooler. Nucl. Instrum. Meth. B 204, 474 (2003)

    ADS  Google Scholar 

  96. F. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps— Physics and Techniques of Charged Particle Field Confinement, 1st edn. (Springer, Heidelberg, 2005)

    Google Scholar 

  97. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)

    Google Scholar 

  98. P.H. Dawson, Quadrupole Mass Spectrometry and Its Applications (Elsevier, Amsterdam, 1995)

    Google Scholar 

  99. P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)

    Google Scholar 

  100. W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531 (1990)

    ADS  Google Scholar 

  101. H.G. Dehmelt, Experiments with an isolated subatomic particle at rest. Rev. Mod. Phys. 62, 525 (1990)

    ADS  Google Scholar 

  102. L.S. Brown, G. Gabrielse, Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    ADS  Google Scholar 

  103. M. Kretzschmar, Int. J. Mass Spectrom., submitted (2013)

    Google Scholar 

  104. G. Bollen et al., The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron resonance in a Penning trap. J. Appl. Phys. 68, 4355 (1990)

    ADS  Google Scholar 

  105. L. Schweikhard, G. Bollen (eds.). Int. J. Mass Spectrom. 251 (2006)

    Google Scholar 

  106. F.M. Penning, Verzögerungen bei der Zündung von gasgefüllten Photozellen im Dunkeln. Physica 3, 563 (1936)

    ADS  Google Scholar 

  107. J.R. Pierce, Theory and Design of Electron Beams (D. van Nostrand Co., NewYork, 1949). (Chapter 3)

    Google Scholar 

  108. S. George et al., The Ramsey method in high-precision mass spectrometry with Penning traps: experimental results. Int. J. Mass Spectrom. 264, 110 (2007)

    ADS  Google Scholar 

  109. G. Gräff, H. Kalinowsky, J. Traut, A direct determination of the proton electron mass ratio. Z. Physik A 297, 35 (1980)

    ADS  Google Scholar 

  110. M. König, G. Bollen, H.-J. Kluge, T. Otto, J. Szerypo, Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spec. Ion Proc. 142, 95 (1995)

    Google Scholar 

  111. G. Gabrielse, The true cyclotron frequency for particles and ions in a Penning trap. Int. J. Mass Spectrom. 279, 107 (2009)

    ADS  Google Scholar 

  112. M. Block, Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785 (2010)

    ADS  Google Scholar 

  113. A. Kellerbauer, Recent improvements of ISOLTRAP: absolute mass measurements of exotic nuclides at 10\(^{-8}\) precision. Int. J. Mass Spectr. 229, 107 (2003)

    Google Scholar 

  114. G. Bollen, Mass measurements of short-lived nuclides with ion traps. Nucl. Phys. A 693, 3 (2001)

    ADS  Google Scholar 

  115. S. Eliseev et al., Octupolar excitation of ions stored in a Penning trap mass spectrometerA study performed at SHIPTRAP. Int. J. Mass Spectrom. 262, 45 (2007)

    ADS  Google Scholar 

  116. R. Ringle et al., Octupolar excitation of ion motion zin a Penning trapA study performed at LEBIT. Int. J. Mass Spectrom. 262, 33 (2007)

    ADS  Google Scholar 

  117. S. Eliseev et al., Octupolar-excitation Penning-trap mass spectrometry for Q-value measurement of double-electron capture in 164Er. Phys. Rev. Lett. 107, 152501 (2011)

    ADS  Google Scholar 

  118. S. Ettenauer et al., First use of high charge states for mass measurements of short-lived nuclides in a Penning trap. Phys. Rev. Lett. 107, 272501 (2012)

    Google Scholar 

  119. S. Eliseev et al., Phase-Imaging Ion-Cyclotron-Resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013)

    ADS  Google Scholar 

  120. A. Kellerbauer et al., From direct to absolute mass measurements: a study of the accuracy of ISOLTRAP. Eur. Phys. J. D 22, 53 (2003)

    ADS  Google Scholar 

  121. M. Block et al., Towards direct mass measurements of nobelium at SHIPTRAP. Eur. Phys J. D 45, 39 (2007)

    ADS  Google Scholar 

  122. C. Droese et al., Investigation of the magnetic field fluctuation and implementation of a temperature and pressure stabilization at SHIPTRAP. Nucl. Instrum. Meth. A 632, 157 (2011)

    ADS  Google Scholar 

  123. G. Gabrielse, F.C. Mackintosh, Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass Spec. Ion Proc. 57, 1 (1984)

    Google Scholar 

  124. G. Bollen et al., Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer. Phys. Rev. C 46, R2140 (1992)

    ADS  Google Scholar 

  125. C. Fröhlich et al., Composition of the innermost core-collapse Supernova Ejecta. Ap. J. 637, 415 (2006)

    ADS  Google Scholar 

  126. T. Beier, The status of FAIR. Hyperfine Int. 194, 99 (2009)

    ADS  Google Scholar 

  127. G. Bollen, FRIBFacility for rare isotope beams. AIP conf. proc. 1224, 432 (2010)

    ADS  Google Scholar 

  128. . M. Lewitowicz, Status of the SPIRAL2 Project. Acta Physica Polonica B 42, 877 (2011)

    Google Scholar 

  129. S. Wanajo, S. Goriely, M. Samyn, N. Itoh, The r-Process in Supernovae: impact of new microscopic mass formulae. Ap. J. 606, 1057 (2004)

    ADS  Google Scholar 

  130. A. Arcones, G.F. Bertsch, Nuclear Correlations and the r Process. Phys. Rev. Lett. 108, 151101 (2012)

    ADS  Google Scholar 

  131. J. Savory et al., Nuclear Scission and Quantum Localization. Phys. Rev. Lett. 107, 132501 (2009)

    ADS  Google Scholar 

  132. A. Martín et al., Mass measurements of neutron-deficient radionuclides near the end-point of the rp-process with SHIPTRAP. Eur. Phys. A 34, 341 (2007)

    ADS  Google Scholar 

  133. P. Schury et al., Precision mass measurements of rare isotopes near N=Z=33 produced by fast beam fragmentation. Phys. Rev. C 75, 055801 (2007)

    ADS  Google Scholar 

  134. C. Weber et al., Mass measurements in the vicinity of the r p-process and the p-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP. Phys. Rev. C 78, 054310 (2008)

    ADS  Google Scholar 

  135. E. Haettner et al., Mass measurements of very Neutron-Deficient Mo and Tc isotopes and their impact on rp Process Nucleosynthesis. Phys. Rev. Lett. 106, 122501 (2011)

    ADS  Google Scholar 

  136. J. Fallis et al., Mass measurements of isotopes of Nb, Mo, Tc, Ru, and Rh along the vp- and rp-process paths using the Canadian Penning trap mass spectrometer. Phys. Rev. C 84, 045807 (2011)

    ADS  Google Scholar 

  137. A. Kankainen et al., Isomer and decay studies for the rp process at IGISOL. Eur. Phys. J. A 48, 49 (2012)

    ADS  Google Scholar 

  138. J. Van Schelt et al., Mass measurements near the r-process path using the Canadian Penning Trap mass spectrometer. Phys. Rev. C 85, 045805 (2012)

    ADS  Google Scholar 

  139. R. Wolf et al., Plumbing neutron stars to new depths with the binding energy of the exotic nuclide \(^{82}\)Zn. Phys. Rev. Lett. 110, 041101 (2013)

    ADS  Google Scholar 

  140. M. Bender et al., Shell structure of superheavy nuclei in self-consistent mean-field models. Phys. Rev. C 60, 034304 (1999)

    ADS  Google Scholar 

  141. S. Cwiok et al., Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705 (2005)

    ADS  Google Scholar 

  142. P. Møller, J.R. Nix, Nuclear ground-state masses and deformations. At. Data Nucl. Data Tab. 59, 185 (1995)

    ADS  Google Scholar 

  143. L. Stavsetra et al., Independent verification of element 114 production in the \(^{48}\)Ca + \(^{242}\)Pu reaction. Phys. Rev. Lett. 103, 132502 (2009)

    ADS  Google Scholar 

  144. ChE Düllmann et al., Production and decay of element 114: High cross sections and the new nucleus \(^{277}\)Hs. Phys. Rev. Lett. 104, 252701 (2010)

    ADS  Google Scholar 

  145. S. Hofmann et al., The reaction \(^{48}\)Ca + \(^{248}\)Cm \(\rightarrow \) 296,116* studied at the GSI-SHIP. Eur. Phys. J. A 48, 62 (2012)

    ADS  Google Scholar 

  146. K. Morita et al., New result in the production and decay of an isotope, \(^{278}\)113, of the 113th element. J. Phys. Soc. Jpn. 81, 103201 (2012)

    ADS  Google Scholar 

  147. Yu.Ts. Oganessian et al., Synthesis of the heaviest elements in \(^{48}\)Ca-induced reactions, Radiochim. Acta 99, 429 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Block .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Block, M. (2014). High-Precision Mass Measurements of Radionuclides with Penning Traps. In: Quint, W., Vogel, M. (eds) Fundamental Physics in Particle Traps. Springer Tracts in Modern Physics, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45201-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45201-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45200-0

  • Online ISBN: 978-3-642-45201-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics