Skip to main content

Tests of Theory in Rydberg States of One-Electron Ions

  • Chapter
  • First Online:
Fundamental Physics in Particle Traps

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 256))

  • 1633 Accesses

Abstract

Comparison of optical frequency measurements to predictions of quantum electrodynamics (QED) for Rydberg states of one-electron ions can test theory and allow new determinations of constants of nature to be made. Simplifications in the QED theory of high-angular-momentum states reduces the uncertainty in the prediction of transition frequencies to a level where a new value of the Rydberg constant which is independent of the proton radius can be determined. Since the energy-level spacing between neighbouring Rydberg states grows as the square of the nuclear charge number, it is possible to study transitions with optical frequencies that are accessible to femtosecond laser frequency combs. Recently at the US National Institute of Standards and Technology (NIST), highly charged ions (including bare nuclei) created in an Electron Beam Ion Trap (EBIT) were extracted and captured in a novel compact Penning trap. An ongoing experiment aims to produce one-electron ions isolated in an ion trap designed for laser spectroscopy. Tests of theory in a regime free of nuclear effects would be valuable in shedding light on the puzzle surrounding the large discrepancy in the value of the proton radius inferred from the observed Lamb shift in muonic hydrogen as compared to the value deduced from hydrogen and deuterium spectroscopy and electron scattering measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA Recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 84(4), 1527 (2012)

    Article  ADS  Google Scholar 

  2. G.W. Series (ed.), The Spectrum of Atomic Hydrogen: Advances (World Scientific, Singapore, 1988)

    Google Scholar 

  3. J.S. Rigden, Hydrogen: The Essential Element (Harvard University Press, Cambridge, 2002)

    Google Scholar 

  4. J.C. Bernauer et al., High-Precision determination of the electric and magnetic form factors of the proton. Phys. Rev. Lett. 105, 242001 (2010)

    Article  ADS  Google Scholar 

  5. G. Ron et al., Low-\(Q^2\) measurements of the proton form factor ratio \(\mu _{\rm P}G_{\rm E}/G_{\rm M}\). Phys. Rev. C 84, 055204 (2011)

    Article  ADS  Google Scholar 

  6. I. Sick, Troubles with the Proton rms-Radius. Few-Body Syst. 50(1–4), 367 (2011)

    Article  ADS  Google Scholar 

  7. I. Sick, Problems with proton radii. Prog. Part. Nucl. Phys. 67(2), 473 (2012)

    Article  ADS  Google Scholar 

  8. C. Adamuscin, S. Dubnicka, A.Z. Dubnickova, New value of the proton charge root mean square radius. Prog. Part. Nucl. Phys. 67(2), 479 (2012)

    Article  ADS  Google Scholar 

  9. R. Pohl et al., The size of the proton. Nature 466(7303), 213 (2010)

    Article  ADS  Google Scholar 

  10. I. Sick, On the rms-radius of the proton. Phys. Lett. B 576(1–2), 62 (2003)

    Article  ADS  Google Scholar 

  11. P. Kusch, H.M. Foley, Precision measurement of the ratio of the atomic ‘g values’ in the \(2{\rm P}_{3/2}\) and \(2{\rm P}_{1/2}\) states of Gallium. Phys. Rev. 72, 1256 (1947)

    Article  ADS  Google Scholar 

  12. W.E. Lamb J, R.C. Retherford, Fine structure of the Hydrogen atom by a microwave method. Phys. Rev. 72(3), 241 (1947)

    Google Scholar 

  13. W.E. Lamb J, Anomalous fine structure of Hydrogen and Singly Ionized Helium. Rep. Prog. Phys. 14, 19 (1951)

    Google Scholar 

  14. R.S. Van Dyck Jr., P.B. Schwinberg, H.G. Dehmelt, New high-precision comparison of electron and positron \(g\) factors. Phys. Rev. Lett. 59(1), 26 (1987)

    Google Scholar 

  15. L.S. Brown, G. Gabrielse, Geonium theory: single electrons and ions in a penning trap. Rev. Mod. Phys. 58(1), 233 (1986)

    Article  ADS  Google Scholar 

  16. D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)

    Article  ADS  Google Scholar 

  17. T. Hänsch, J. Alnis, P. Fendel, M. Fischer, C. Gohle, M. Herrmann, R. Holzwarth, N. Kolachevsky, T. Udem, M. Zimmermann, Precision spectroscopy of hydrogen and femtosecond laser frequency combs. Philos. Trans. R. Soc. London Ser. A 363(1834), 2155 (2005)

    Article  Google Scholar 

  18. F. Dyson, quoted in G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 97, 030802 (2006)

    Google Scholar 

  19. U.D. Jentschura, P.J. Mohr, J.N. Tan, B.J. Wundt, Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions. Phys. Rev. Lett. 100, 160404 (2008)

    Article  ADS  Google Scholar 

  20. T.F. Gallagher, Rydberg Atoms, 1st edn. (Cambridge University Press, New York, 1994)

    Book  Google Scholar 

  21. I. Sick, Precise proton radii from electron scattering. Can. J. Phys. 85(5), 409 (2007)

    Article  ADS  Google Scholar 

  22. I. Sick, in Precision Physics of Simple Atoms and Molecules, ed. by S.G. Karshenboim, Lecture Notes in Physics 745 (Springer, Berlin 2008), pp. 57–77

    Google Scholar 

  23. M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, T.W. Hänsch, M. Abgrall, J. Grünert, I. Maksimovic, S. Bize, H. Marion, F.P. Dos Santos, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, M. Haas, U.D. Jentschura, C.H. Keitel, New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett. 92, 230802 (2004)

    Article  ADS  Google Scholar 

  24. M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, W. Vassen, C. Zimmermann, K. Pachucki, T.W. Hänsch, L. Julien, F. Biraben, Precision measurement of the 1S ground-state Lamb shift in atomic hydrogen and deuterium by frequency comparison. Phys. Rev. A 52(4), 2664 (1995)

    Article  ADS  Google Scholar 

  25. C.G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U.D. Jentschura, N. Kolachevsky, T.W. Hänsch, Precision measurement of the Hydrogen-Deuterium 1S–2S isotope shift. Phys. Rev. Lett. 104, 233001 (2010)

    Article  ADS  Google Scholar 

  26. C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef, A. Clairon, Optical frequency measurement of the 2S–12D transitions in hydrogen and deuterium: rydberg constant and lamb shift determinations. Phys. Rev. Lett. 82(25), 4960 (1999)

    Article  ADS  Google Scholar 

  27. O. Arnoult, F. Nez, L. Julien, F. Biraben, Optical frequency measurement of the 1S-3S two-photon transition in hydrogen. Eur. Phys. J. D 60(2), 243 (2010)

    Article  ADS  Google Scholar 

  28. S. Bourzeix, B. de Beauvoir, F. Nez, M.D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D.N. Stacey, High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift. Phys. Rev. Lett. 76(3), 384 (1996)

    Article  ADS  Google Scholar 

  29. D.J. Berkeland, E.A. Hinds, M.G. Boshier, Precise optical measurement of lamb shifts in atomic hydrogen. Phys. Rev. Lett. 75(13), 2470 (1995)

    Article  ADS  Google Scholar 

  30. E.W. Hagley, F.M. Pipkin, Separated oscillatory field measurement of hydrogen \(2{\rm S}_{1/2}\)-\(2{\rm P}_{3/2}\) fine structure interval. Phys. Rev. Lett. 72(8), 1172 (1994)

    Article  ADS  Google Scholar 

  31. S.R. Lundeen, F.M. Pipkin, Separated sscillatory field measurement of the Lamb shift in H, n\(=\)2. Metrologia 22(1), 9 (1986)

    Article  ADS  Google Scholar 

  32. G. Newton, D.A. Andrews, P.J. Unsworth, A precision determination of the Lamb shift in hydrogen. Philos. Trans. R. Soc. London Ser. A 290(1373), 373 (1979)

    Article  ADS  Google Scholar 

  33. Z. Zhan et al., High-precision measurement of the proton elastic form factor ratio \(\mu _{\rm P}G_{\rm E}/G_{\rm M}\) at low \(Q^2\). Phys. Lett. B 705(1–2), 59 (2011)

    Article  ADS  Google Scholar 

  34. R. Pohl, R. Gilman, G.A. Miller, K. Pachucki, Muonic Hydrogen and the Proton Radius Puzzle. Annu. Rev. Nucl. Part. Sci. 63, 175 (2013)

    Article  ADS  Google Scholar 

  35. R. Pohl et al., The size of the proton and the deuteron. J. Phys. Conf. Ser. 264, 012008 (2011)

    Article  ADS  Google Scholar 

  36. A. Antognini et al., Proton structure from the measurement of 2S–2P transition frequencies of Muonic Hydrogen. Science 339(6118), 417 (2013)

    Article  ADS  Google Scholar 

  37. A. Antognini, F. Kottmann, F. Biraben, P. Indelicato, F. Nez, R. Pohl, Theory of the 2S-2P Lamb shift and 2S hyperfine splitting in muonic hydrogen. Ann. Phys. (N.Y.) 331, 127 (2013)

    Google Scholar 

  38. P. Indelicato, Nonperturbative evaluation of some QED contributions to the muonic hydrogen n\(\,=\,\)2 Lamb shift and hyperfine structure. Phys. Rev. A 87, 022501 (2013)

    Article  ADS  Google Scholar 

  39. E. Borie, Lamb shift in light muonic atoms–Revisited. Ann. Phys. (N.Y.) 327(3), 733 (2012). ArXiv:1103.1772-v6

    Google Scholar 

  40. S.G. Karshenboim, V.G. Ivanov, E.Y. Korzinin, Relativistic recoil corrections to the electron-vacuum-polarization contribution in light muonic atoms. Phys. Rev. A 85, 032509 (2012)

    Article  ADS  Google Scholar 

  41. U.D. Jentschura, Lamb shift in muonic hydrogen–I. Verification and update of theoretical predictions. Ann. Phys. (N.Y.) 326(2), 500 (2011)

    Google Scholar 

  42. U.D. Jentschura, Lamb shift in muonic hydrogen–II. Analysis of the discrepancy of theory and experiment. Ann. Phys. (N.Y.) 326(2), 516 (2011)

    Google Scholar 

  43. J.D. Carroll, A.W. Thomas, J. Rafelski, G.A. Miller, Nonperturbative relativistic calculation of the muonic hydrogen spectrum. Phys. Rev. A 84, 012506 (2011)

    Article  ADS  Google Scholar 

  44. J.C. De Vries, A precision millimeter-wave measurement of the Rydberg frequency. Ph.D. Thesis, MIT 2001

    Google Scholar 

  45. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78(4), 1297 (2006)

    Article  ADS  Google Scholar 

  46. M. Hori, A. Dax, J. Eades, K. Gomikawa, R. Hayano, N. Ono, W. Pirkl, E. Widmann, H.A. Torii, B. Juhász, D. Barna, D. Horváth, Determination of the Antiproton-to-Electron mass ratio by precision laser spectroscopy of \(\bar{\rm p}{\rm He}^+\). Phys. Rev. Lett. 96, 243401 (2006)

    Article  ADS  Google Scholar 

  47. L.S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams, Optical frequency synthesis and comparison with uncertainty at the 10\(^{-19}\) level. Science 303(5665), 1843 (2004)

    Article  ADS  Google Scholar 

  48. A. Marian, M.C. Stowe, J.R. Lawall, D. Felinto, J. Ye, United time-frequency spectroscopy for dynamics and global structure. Science 306(5704), 2063 (2004)

    Article  ADS  Google Scholar 

  49. J.R. Sapirstein, D.R. Yennie, in Quantum Electrodynamics, ed. by T. Kinoshita, (World Scientific, Singapore, 1990), Chap. 12, pp. 560–672

    Google Scholar 

  50. M.I. Eides, H. Grotch, V.A. Shelyuto, Theory of light hydrogenlike atoms. Phys. Rep. 342(2–3), 63 (2001)

    Article  ADS  MATH  Google Scholar 

  51. G. Gabrielse, P. Larochelle, D. Le Sage, B. Levitt, W.S. Kolthammer, R. McConnell, P. Richerme, J. Wrubel, A. Speck, M.C. George, D. Grzonka, W. Oelert, T. Sefzick, Z. Zhang, A. Carew, D. Comeau, E.A. Hessels, C.H. Storry, M. Weel, J. Walz, Antihydrogen production within a penning-ioffe trap. Phys. Rev. Lett. 100, 113001 (2008)

    Article  ADS  Google Scholar 

  52. U.D. Jentschura, P.J. Mohr, J.N. Tan, B.J. Wundt, Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions. Can. J. Phys. 87(7), 757 (2009)

    Article  ADS  Google Scholar 

  53. U.D. Jentschura, P.J. Mohr, J.N. Tan, Fundamental constants and tests of theory in Rydberg states of one-electron ions. J. Phys. B 43, 074002 (2010)

    Article  ADS  Google Scholar 

  54. E.H. Wichmann, N.M. Kroll, Vacuum polarization in a strong Coulomb field. Phys. Rev. 101(2), 843 (1956)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. U.D. Jentschura, Two-loop Bethe logarithms for non-S levels. Phys. Rev. A 74, 062517 (2006)

    Article  ADS  Google Scholar 

  56. E.O. Le Bigot, U.D. Jentschura, P.J. Mohr, P. Indelicato, G. Soff, Perturbation approach to the self-energy of non-S hydrogenic states. Phys. Rev. A 68, 042101 (2003)

    Article  ADS  Google Scholar 

  57. G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation (II). Nucl. Phys. A 729(1), 337 (2003)

    Article  ADS  Google Scholar 

  58. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-electron Atoms (Academic Press, New York, 1957)

    Book  MATH  Google Scholar 

  59. F. Low, Natural Line Shape. Phys. Rev. 88(1), 53 (1952)

    Article  ADS  MATH  Google Scholar 

  60. U.D. Jentschura, P.J. Mohr, Nonresonant effects in one- and two-photon transitions. Can. J. Phys. 80(6), 633 (2002)

    Article  ADS  Google Scholar 

  61. D. Kleppner, Private communication (2012)

    Google Scholar 

  62. W.M. Itano et al., Cooling methods in ion traps. Phys. Scripta T59, 106 (1995)

    Article  ADS  Google Scholar 

  63. G. Gabrielse, Atoms made entirely of antimatter: Two methods produce slow antihydrogen in Advances in Atomic Molecular, and Optical Physics, ed. by B. Bederson, H. Walthers (Elsevier, San Diego, 2005), 50, pp. 155–217

    Google Scholar 

  64. L.P. Ratliff, E.W. Bell, D.C. Parks, A.I. Pikin, J.D. Gillaspy, Continuous highly charged ion beams from the NIST electron-beam ion trap. Rev. Sci. Instrum. 68, 1998 (1997)

    Google Scholar 

  65. L. Ratliff, J. Roberts, Highly charged ion studies at the NIST EBIT, in Trapping Highly Charged Ions: Fundamentals & Applications, ed. by J. Gillaspy (Nova Science Publishers, Hauppauge, 2001), p. 257

    Google Scholar 

  66. M.R. Flannery, D. Vrinceanu, Quantal and classical radiative cascade in Rydberg plasmas. Phys. Rev. A 68, 030502(R) (2003)

    Article  ADS  Google Scholar 

  67. J.D. Gillaspy, L.P. Ratliff, J.R. Roberts, E. Takács, Highly charged ions: Publications of the ebit project, 1993–2001. Special Publication 972, NIST (2001).

    Google Scholar 

  68. J.N. Tan, S.M. Brewer, N.D. Guise, Penning traps with unitary architecture for storage of highly charged ions. Rev. Sci. Instrum. 83(2), 023103 (2012). doi:10.1063/1.3685246. http://link.aip.org/link/?RSI/83/023103/1

    Google Scholar 

  69. G.E. Holland, C.N. Boyer, J.F. Seely, J.N. Tan, J.M. Pomeroy, J.D. Gillaspy, Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections. Rev. Sci. Instrum. 76(7), 073304 (2005)

    Article  ADS  Google Scholar 

  70. S.M. Brewer, N.D. Guise, J.N. Tan, Capture and isolation of highly charged ions in a unitary Penning trap. Phys. Rev. A 88, 063403 (2013). doi:10.1103/PhysRevA.88.063403

  71. N.D. Guise, S.M. Brewer, J.N. Tan, Highly charged ions in rare-earth permanent-magnet Penning traps. arXiv:1207.3333v1 e-prints (2012)

    Google Scholar 

  72. S.M. Brewer, N.D. Guise, J.N. Tan, Observing forbidden radiative decay of highly charged ions in a compact Penning trap. BAPS.2012.DAMOP.U3.8 (2012)

    Google Scholar 

  73. N.D. Guise, S.M. Brewer, J.N. Tan, Charge exchange and spectroscopy with isolated highly charged ions. BAPS.2012.DAMOP.U3.6 (2012)

    Google Scholar 

  74. S.R. Lundeen, C.W. Fehrenbach, Polarizability of Kr\(^{6+}\) from high-L Kr\(^{5+}\) fine-structure measurements. Phys. Rev. A 75(3), 032523 (2007). doi:10.1103/PhysRevA.75.032523

  75. R. Olson, Ion-Rydberg atom collision cross sections. J. Phys. B: Atom. Molec. Phys. 13, 483 (1980)

    Article  ADS  Google Scholar 

  76. B.D. DePaola, M.T. Huang, S. Winecki, M.P. Stockli, Y. Kanai, S.R. Lundeen, C.W. Fehrenbach, S.A. Arko, Absolute cross-sections for charge capture from Rydberg targets by slow highly charged ions. Phys. Rev. A 52, 2136 (1995)

    Article  ADS  Google Scholar 

  77. P.J. Mohr, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys. 77(1), 1 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Experimental work by S.M. Brewer and N.D. Guise has been supported by the Chemical Physics Program of the University of Maryland, and the Research Associateship Program of the U.S. National Research Council, respectively. Valuable contributions to the theory of Rydberg states have been made by U.D. Jentschura and B.J. Wundt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph N. Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tan, J.N., Mohr, P.J. (2014). Tests of Theory in Rydberg States of One-Electron Ions. In: Quint, W., Vogel, M. (eds) Fundamental Physics in Particle Traps. Springer Tracts in Modern Physics, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45201-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45201-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45200-0

  • Online ISBN: 978-3-642-45201-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics