Skip to main content

Transcriptional and Epigenetic Regulation in the Development of Myeloid Cells: Normal and Diseased Myelopoiesis

  • Chapter
  • First Online:
Book cover Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1074 Accesses

Abstract

Myeloid cells constitute the innate arm of the vertebrate immune system and arise from haematopoietic stem cells being committed to their cell fate through a series of lineage restrictions regulated by a gene regulatory network. This gene network consists of transcription factors as well as components of the epigenetic machinery that, in cooperation with one another, will programme progenitors to adopt and differentiate along a certain lineage programme. By virtue of their obligatory function, dysregulation in the activity of these regulatory factors can contribute to the pathogenesis of myeloid leukaemias. To understand the molecular aetiology of myeloid dysplasias it is imperative to first study and model the network that regulates normal development. Equipped with this crucial understanding we can then begin to decipher what, how and why things have gone wrong in the pathology of myeloid leukaemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab O, Mullally A, Hedvat C et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147. doi:10.1182/blood-2009-03-210039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197

    CAS  PubMed  Google Scholar 

  • Anafi M, Gazit A, Gilon C, Ben-Neriah Y, Levitzki A (1992) Selective interactions of transforming and normal abl proteins with ATP, tyrosine-copolymer substrates, and tyrphostins. J Biol Chem 267:4518–4523

    CAS  PubMed  Google Scholar 

  • Back J, Allman D, Chan S, Kastner P (2005) Visualizing PU.1 activity during hematopoiesis. Exp Hematol 33:395–402

    CAS  PubMed  Google Scholar 

  • Balmer JE, Blomhoff R (2005) A robust characterization of retinoic acid response elements based on a comparison of sites in three species. J Steroid Biochem Mol Biol 96:347–354. doi:10.1016/j.jsbmb.2005.05.005

    CAS  PubMed  Google Scholar 

  • Bereshchenko O, Mancini E, Moore S et al (2009) Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell 16:390–400. doi:10.1016/j.ccr.2009.09.036

    CAS  PubMed  Google Scholar 

  • Bonifer C, Hoogenkamp M, Krysinska H, Tagoh H (2008) How transcription factors program chromatin–lessons from studies of the regulation of myeloid-specific genes. Semin Immunol 20:257–263. doi:10.1016/j.smim.2008.05.001, S1044-5323(08)00045-6 [pii]

    CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    CAS  PubMed  Google Scholar 

  • Burda P, Curik N, Kokavec J et al (2009) PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation. Mol Cancer Res 7:1693–1703. doi:10.1158/1541-7786.MCR-09-0031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burda P, Laslo P, Stopka T (2010) The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia 24:1249–1257. doi:10.1038/leu.2010.104

    CAS  PubMed  Google Scholar 

  • Caligiuri MA, Strout MP, Lawrence D et al (1998) Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res 58:55–59

    CAS  PubMed  Google Scholar 

  • Chen HM, Zhang P, Voso MT et al (1995) Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B. Blood 85:2918–2928

    CAS  PubMed  Google Scholar 

  • Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–891. doi:10.1038/nature07619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng JX, Anastasi J, Watanabe K et al (2013) Genome-wide profiling reveals epigenetic inactivation of the PU.1 Pathway by histone H3 lysine 27 tri-methylation in cytogenetically normal myelodysplastic syndrome. Leukemia 27(6):1291–1300. doi:10.1038/leu.2013.45

    CAS  PubMed  Google Scholar 

  • Craddock C, Quek L, Goardon N et al (2013) Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 27:1028–1036. doi:10.1038/leu.2012.312

    CAS  PubMed  Google Scholar 

  • Curik N, Burda P, Vargova K et al (2012) 5-Azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia 26:1804–1811. doi:10.1038/leu.2012.47

    CAS  PubMed  Google Scholar 

  • Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL (2005) PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201:1487–1502. doi:10.1084/jem.20050075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744. doi:10.1038/nature08617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Croce L, Raker VA, Corsaro M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082. doi:10.1126/science.1065173

    PubMed  Google Scholar 

  • Dicker F, Haferlach C, Sundermann J et al (2010) Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 24:1528–1532. doi:10.1038/leu.2010.124

    CAS  PubMed  Google Scholar 

  • Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    CAS  PubMed  Google Scholar 

  • Ernst T, Chase AJ, Score J et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726. doi:10.1038/ng.621

    CAS  PubMed  Google Scholar 

  • Evans T, Felsenfeld G (1989) The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58:877–885

    CAS  PubMed  Google Scholar 

  • Fadilah SA, Cheong SK, Roslan H, Rozie-Hanisa M, Yen GK (2002) GATA-1 and GATA-2 gene expression is related to the severity of dysplasia in myelodysplastic syndrome. Leukemia 16:1563–1565. doi:10.1038/sj.leu.2402517

    CAS  PubMed  Google Scholar 

  • Ferrari-Amorotti G, Keeshan K, Zattoni M et al (2006) Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPalpha. Blood 108:1353–1362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567. doi:10.1016/j.ccr.2010.11.015

    CAS  PubMed  Google Scholar 

  • Follows GA, Tagoh H, Lefevre P, Hodge D, Morgan GJ, Bonifer C (2003) Epigenetic consequences of AML1-ETO action at the human c-FMS locus. EMBO J 22:2798–2809. doi:10.1093/emboj/cdg250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman AD (2007) Transcriptional control of granulocyte and monocyte development. Oncogene 26:6816–6828. doi:10.1038/sj.onc.1210764, 1210764 [pii]

    CAS  PubMed  Google Scholar 

  • Ghisletti S, Barozzi I, Mietton F et al (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32:317–328. doi:10.1016/j.immuni.2010.02.008

    CAS  PubMed  Google Scholar 

  • Goardon N, Marchi E, Atzberger A et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19:138–152. doi:10.1016/j.ccr.2010.12.012

    CAS  PubMed  Google Scholar 

  • Gombart AF, Hofmann WK, Kawano S et al (2002) Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 99:1332–1340

    CAS  PubMed  Google Scholar 

  • Grembecka J, He S, Shi A et al (2012) Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 8:277–284. doi:10.1038/nchembio.773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grignani F, Ferrucci PF, Testa U et al (1993) The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74:423–431

    CAS  PubMed  Google Scholar 

  • Grignani F, De Matteis S, Nervi C et al (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391:815–818. doi:10.1038/35901

    CAS  PubMed  Google Scholar 

  • Growney JD, Shigematsu H, Li Z et al (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106:494–504. doi:10.1182/blood-2004-08-3280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn CN, Chong CE, Carmichael CL et al (2011) Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 43:1012–1017. doi:10.1038/ng.913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hart SM, Foroni L (2002) Core binding factor genes and human leukemia. Haematologica 87:1307–1323

    CAS  PubMed  Google Scholar 

  • He LZ, Tribioli C, Rivi R et al (1997) Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 94:5302–5307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heavey B, Charalambous C, Cobaleda C, Busslinger M (2003) Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPalpha and GATA factors. EMBO J 22:3887–3897. doi:10.1093/emboj/cdg380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589. doi:10.1016/j.molcel.2010.05.004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang ME, Ye YC, Chen SR et al (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    CAS  PubMed  Google Scholar 

  • Huang G, Zhao X, Wang L et al (2011) The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood 118:6544–6552. doi:10.1182/blood-2010-11-317909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huntly BJ, Shigematsu H, Deguchi K et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596. doi:10.1016/j.ccr.2004.10.015

    CAS  PubMed  Google Scholar 

  • Ichikawa M, Asai T, Saito T et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304. doi:10.1038/nm997

    CAS  PubMed  Google Scholar 

  • Imai Y, Kurokawa M, Izutsu K et al (2000) Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 96:3154–3160

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H et al (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590–1600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob B, Osato M, Yamashita N et al (2010) Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood 115:1610–1620. doi:10.1182/blood-2009-07-232249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kastner P, Mark M, Ghyselinck N, Krezel W, Dupe V, Grondona JM, Chambon P (1997) Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124:313–326

    CAS  PubMed  Google Scholar 

  • Kastner P, Lawrence HJ, Waltzinger C, Ghyselinck NB, Chambon P, Chan S (2001) Positive and negative regulation of granulopoiesis by endogenous RARalpha. Blood 97:1314–1320

    CAS  PubMed  Google Scholar 

  • Kim HG, de Guzman CG, Swindle CS, Cotta CV, Gartland L, Scott EW, Klug CA (2004) The ETS family transcription factor PU.1 is necessary for the maintenance of fetal liver hematopoietic stem cells. Blood 104:3894–3900. doi:10.1182/blood-2002-08-2425

    CAS  PubMed  Google Scholar 

  • Kirstetter P, Schuster MB, Bereshchenko O et al (2008) Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 13:299–310. doi:10.1016/j.ccr.2008.02.008

    CAS  PubMed  Google Scholar 

  • Ko M, Huang Y, Jankowska AM et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843. doi:10.1038/nature09586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kodandapani R, Pio F, Ni CZ et al (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380:456–460. doi:10.1038/380456a0

    CAS  PubMed  Google Scholar 

  • Kosmider O, Gelsi-Boyer V, Ciudad M et al (2009) TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 94:1676–1681. doi:10.3324/haematol.2009.011205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822. doi:10.1038/nature04980

    CAS  PubMed  Google Scholar 

  • Lahortiga I, Vazquez I, Agirre X et al (2004) Molecular heterogeneity in AML/MDS patients with 3q21q26 rearrangements. Genes Chromosomes Cancer 40:179–189. doi:10.1002/gcc.20033

    CAS  PubMed  Google Scholar 

  • Lamandin C, Sagot C, Roumier C et al (2002) Are PU.1 mutations frequent genetic events in acute myeloid leukemia (AML)? Blood 100:4680–4681. doi:10.1182/blood-2002-08-2563

    CAS  PubMed  Google Scholar 

  • Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–895. doi:10.1038/nature07679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laslo P, Spooner CJ, Warmflash A et al (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–766

    CAS  PubMed  Google Scholar 

  • Leddin M, Perrod C, Hoogenkamp M et al (2011) Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood 117:2827–2838. doi:10.1182/blood-2010-08-302976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ley TJ, Ding L, Walter MJ et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363:2424–2433. doi:10.1056/NEJMoa1005143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Okuno Y, Zhang P et al (2001) Regulation of the PU.1 gene by distal elements. Blood 98:2958–2965

    CAS  PubMed  Google Scholar 

  • Linggi B, Muller-Tidow C, van de Locht L et al (2002) The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8:743–750. doi:10.1038/nm726

    CAS  PubMed  Google Scholar 

  • Luesink M, Hollink IH, van der Velden VH et al (2012) High GATA2 expression is a poor prognostic marker in pediatric acute myeloid leukemia. Blood 120:2064–2075. doi:10.1182/blood-2011-12-397083

    CAS  PubMed  Google Scholar 

  • Martens JH, Brinkman AB, Simmer F et al (2010) PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17:173–185. doi:10.1016/j.ccr.2009.12.042

    CAS  PubMed  Google Scholar 

  • Martin ME, Milne TA, Bloyer S et al (2003) Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 4:197–207

    CAS  PubMed  Google Scholar 

  • Mathews V, George B, Chendamarai E et al (2010) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol 28:3866–3871. doi:10.1200/JCO.2010.28.5031

    CAS  PubMed  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL et al (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15:5647–5658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyers S, Downing JR, Hiebert SW (1993) Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13:6336–6345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991) t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88:10431–10434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyoshi H, Kozu T, Shimizu K et al (1993) The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 12:2715–2721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohr F, Dohner K, Buske C, Rawat VP (2011) TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol 39:272–281. doi:10.1016/j.exphem.2010.12.004

    CAS  PubMed  Google Scholar 

  • Moran-Crusio K, Reavie L, Shih A et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24. doi:10.1016/j.ccr.2011.06.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331:277–280. doi:10.1038/331277a0

    CAS  PubMed  Google Scholar 

  • Mosad E, Abdou M, Zaky AH (2012) Rearrangement of the myeloid/lymphoid leukemia gene in therapy-related myelodysplastic syndrome in patients previously treated with agents targeting DNA topoisomerase II. Oncology 83:128–134. doi:10.1159/000338769

    CAS  PubMed  Google Scholar 

  • Motoda L, Osato M, Yamashita N et al (2007) Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells 25:2976–2986. doi:10.1634/stemcells.2007-0061

    CAS  PubMed  Google Scholar 

  • Mueller BU, Pabst T, Osato M et al (2002) Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100:998–1007

    CAS  PubMed  Google Scholar 

  • Mueller BU, Pabst T, Fos J et al (2006) ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 107:3330–3338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy L, Kao HY, Chakravarti D et al (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380

    CAS  PubMed  Google Scholar 

  • Niederreither K, Dolle P (2008) Retinoic acid in development: towards an integrated view. Nat Rev Genet 9:541–553. doi:10.1038/nrg2340

    CAS  PubMed  Google Scholar 

  • Nikoloski G, Langemeijer SM, Kuiper RP et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667. doi:10.1038/ng.620

    CAS  PubMed  Google Scholar 

  • North T, Gu TL, Stacy T et al (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126:2563–2575

    CAS  PubMed  Google Scholar 

  • Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201:221–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    CAS  PubMed  Google Scholar 

  • Okuno Y, Huang G, Rosenbauer F et al (2005) Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol Cell Biol 25:2832–2845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osato M, Asou N, Abdalla E et al (1999) Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 93:1817–1824

    CAS  PubMed  Google Scholar 

  • Pabst T, Mueller BU, Harakawa N et al (2001a) AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 7:444–451. doi:10.1038/86515

    CAS  PubMed  Google Scholar 

  • Pabst T, Mueller BU, Zhang P et al (2001b) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27:263–270. doi:10.1038/85820

    CAS  PubMed  Google Scholar 

  • Perrotti D, Cesi V, Trotta R et al (2002) BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 30:48–58

    CAS  PubMed  Google Scholar 

  • Peterson LF, Boyapati A, Ahn EY et al (2007) Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 110:799–805. doi:10.1182/blood-2006-11-019265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ptasinska A, Assi SA, Mannari D et al (2012) Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 26:1829–1841. doi:10.1038/leu.2012.49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Putz G, Rosner A, Nuesslein I, Schmitz N, Buchholz F (2006) AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene 25:929–939. doi:10.1038/sj.onc.1209136

    CAS  PubMed  Google Scholar 

  • Ray D, Kwon SY, Tagoh H, Heidenreich O, Ptasinska A, Bonifer C (2013) Lineage inappropriate PAX5 expression in t(8;21) acute myeloid leukemia requires signalling mediated abrogation of polycomb repression. Blood 122(5):759–69. doi:10.1182/blood-2013-02-482497

    CAS  PubMed  Google Scholar 

  • Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C et al (2012) Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 119:5824–5831. doi:10.1182/blood-2011-07-367961

    CAS  PubMed  Google Scholar 

  • Rodrigues NP, Janzen V, Forkert R et al (2005) Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106:477–484. doi:10.1182/blood-2004-08-2989

    CAS  PubMed  Google Scholar 

  • Rodrigues NP, Boyd AS, Fugazza C et al (2008) GATA-2 regulates granulocyte-macrophage progenitor cell function. Blood 112:4862–4873. doi:10.1182/blood-2008-01-136564

    CAS  PubMed  Google Scholar 

  • Rosenbauer F, Wagner K, Kutok JL et al (2004) Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36:624–630

    CAS  PubMed  Google Scholar 

  • Rowley JD (1973) Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet 16:109–112

    CAS  PubMed  Google Scholar 

  • Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, Skoda RC (2010) Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood 115:2003–2007. doi:10.1182/blood-2009-09-245381

    CAS  PubMed  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577

    CAS  PubMed  Google Scholar 

  • Shia WJ, Okumura AJ, Yan M et al (2012) PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 119:4953–4962. doi:10.1182/blood-2011-04-347476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snaddon J, Smith ML, Neat M et al (2003) Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer 37:72–78. doi:10.1002/gcc.10185

    CAS  PubMed  Google Scholar 

  • Sun XJ, Wang Z, Wang L et al (2013) A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 500:93–97. doi:10.1038/nature12287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tahirov TH, Inoue-Bungo T, Morii H et al (2001) Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104:755–767

    CAS  PubMed  Google Scholar 

  • Tenen DG (2003) Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3:89–101. doi:10.1038/nrc989, nrc989 [pii]

    CAS  PubMed  Google Scholar 

  • Tiacci E, Pileri S, Orleth A et al (2004) PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res 64:7399–7404. doi:10.1158/0008-5472.CAN-04-1865

    CAS  PubMed  Google Scholar 

  • Tipping AJ, Pina C, Castor A et al (2009) High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113:2661–2672. doi:10.1182/blood-2008-06-161117

    CAS  PubMed  Google Scholar 

  • Tsai FY, Orkin SH (1997) Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89:3636–3643

    CAS  PubMed  Google Scholar 

  • Tsai FY, Keller G, Kuo FC et al (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226. doi:10.1038/371221a0

    CAS  PubMed  Google Scholar 

  • Vangala RK, Heiss-Neumann MS, Rangatia JS et al (2003) The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101:270–277

    CAS  PubMed  Google Scholar 

  • Vicente C, Vazquez I, Conchillo A et al (2012) Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia 26:550–554. doi:10.1038/leu.2011.235

    CAS  PubMed  Google Scholar 

  • Villa R, Pasini D, Gutierrez A et al (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11:513–525. doi:10.1016/j.ccr.2007.04.009

    CAS  PubMed  Google Scholar 

  • Walsh JC, DeKoter RP, Lee HJ et al (2002) Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17:665–676

    CAS  PubMed  Google Scholar 

  • Walter K, Cockerill PN, Barlow R et al (2010) Aberrant expression of CD19 in AML with t(8;21) involves a poised chromatin structure and PAX5. Oncogene 29(20):2927–2937

    CAS  PubMed  Google Scholar 

  • Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14:637–646. doi:10.1016/j.molcel.2004.05.009

    CAS  PubMed  Google Scholar 

  • Wang K, Wang P, Shi J et al (2010) PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 17:186–197. doi:10.1016/j.ccr.2009.12.045

    CAS  PubMed  Google Scholar 

  • Wang L, Gural A, Sun XJ et al (2011) The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333:765–769. doi:10.1126/science.1201662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Travins J, Delabarre B et al (2013) Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–626. doi:10.1126/science.1234769

    CAS  PubMed  Google Scholar 

  • Weinstein IB (2002) Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297:63–64. doi:10.1126/science.1073096

    CAS  PubMed  Google Scholar 

  • Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–278. doi:10.1016/j.cell.2012.06.023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    CAS  PubMed  Google Scholar 

  • Yan XJ, Xu J, Gu ZH et al (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43:309–315. doi:10.1038/ng.788

    CAS  PubMed  Google Scholar 

  • Ye M, Zhang H, Amabile G et al (2013) C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat Cell Biol 15:385–394. doi:10.1038/ncb2698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG (1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha- deficient mice. Proc Natl Acad Sci USA 94:569–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Iwasaki-Arai J, Iwasaki H et al (2004) Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 21:853–863

    CAS  PubMed  Google Scholar 

  • Zhang SJ, Ma LY, Huang QH et al (2008) Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci USA 105:2076–2081. doi:10.1073/pnas.0711824105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SJ, Shi JY, Li JY (2009) GATA-2L359V mutation is exclusively associated with CML progression but not other hematological malignancies and GATA-2 P250A is a novel single nucleotide polymorphism. Leuk Res 33:1141–1143. doi:10.1016/j.leukres.2009.02.025

    CAS  PubMed  Google Scholar 

  • Zhu J, Koken MH, Quignon F et al (1997) Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:3978–3983

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We apologise to the many authors whose work we could not cite owing to space constraints. This work was supported by grants from Leukaemia and Lymphoma Research (PL), Royal Society (PL), Grant Agency of the Czech Republic # P305/12/1033 (TS) Institutional (TS): Charles University: UNCE 204021, First Medical Faculty: PRVOUK-P24/LF1/3 & SVV-2013-264507, BIOCEV—Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (CZ.1.05/1.1.00/02.0109), from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Laslo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laslo, P., Stopka, T. (2014). Transcriptional and Epigenetic Regulation in the Development of Myeloid Cells: Normal and Diseased Myelopoiesis. In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_9

Download citation

Publish with us

Policies and ethics