Skip to main content

What Can We Learn from Flies: Epigenetic Mechanisms Regulating Blood Cell Development in Drosophila

  • Chapter
  • First Online:
Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

Drosophila (fruit flies) possess a highly effective innate immune system that provides defence against pathogens that include bacteria, fungi and parasites. Pathogens are neutralised by mechanisms that include phagocytosis, encapsulation and melanisation. Circulating cells called haemocytes are a key component of the innate immune system and include cells that resemble the granulocyte–macrophage lineages of mammals. The mechanisms that regulate Drosophila haematopoietic progenitor specification and differentiation are highly conserved, allowing Drosophila to be used as a useful model to understand transcriptional regulation of haematopoiesis. In this review I will summarise the mesodermal origin of Drosophila haemocyte precursors and describe parallels with mammalian haemangioblast precursors. I will discuss key signalling pathways and transcription factors that regulate differentiation of the three principal haemocyte cell types. There are significant parallels with the transcriptional circuitry that controls mammalian haematopoiesis, with transcription factors such as GATA factors, RUNX family members and STAT proteins influencing the specification and differentiation of Drosophila haemocytes. These transcription factors recruit co-repressor or co-activator complexes that alter chromatin structure to regulate gene expression. I will discuss how the Drosophila haematopoietic compartment has been used to explore function of ATP-dependent chromatin remodelling complexes and histone modifying complexes. As key regulators of haematopoiesis are conserved, the great genetic amenability of Drosophila offers a powerful system to dissect function of leukaemogenic fusion proteins such as RUNX1-ETO. In the final section of the review the use of genetic screens to identify novel RUNX1-ETO interacting factors will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonso TB, Jones BW (2002) gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Dev Biol 248:369–383

    CAS  PubMed  Google Scholar 

  • Arber DA, Chang KL, Lyda MH, Bedell V, Spielberger R, Slovak ML (2003) Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia. Hum Pathol 34:809–813

    CAS  PubMed  Google Scholar 

  • Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP (1997) Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol 17:5581–5587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avet-Rochex A, Boyer K, Polesello C, Gobert V, Osman D, Roch F et al (2010) An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis. BMC Dev Biol 10:65

    PubMed Central  PubMed  Google Scholar 

  • Badenhorst P, Voas M, Rebay I, Wu C (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16:3186–3198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badenhorst P, Xiao H, Cherbas L, Kwon SY, Voas M, Rebay I et al (2005) The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes Dev 19:2540–2545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barak O, Lazzaro MA, Lane WS, Speicher DW, Picketts DJ, Shiekhattar R (2003) Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J 22:6089–6100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barigozzi C (1969) Genetic control of melanotic tumors in Drosophila. Natl Cancer Inst Monogr 31:277–290

    CAS  PubMed  Google Scholar 

  • Bataille L, Auge B, Ferjoux G, Haenlin M, Waltzer L (2005) Resolving embryonic blood cell fate choice in Drosophila: interplay of GCM and RUNX factors. Development 132:4635–4644

    CAS  PubMed  Google Scholar 

  • Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al (2000) C-kit mutations in core binding factor leukemias. Blood 95:726–728

    CAS  PubMed  Google Scholar 

  • Beiman M, Shilo BZ, Volk T (1996) Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev 10:2993–3002

    CAS  PubMed  Google Scholar 

  • Bernardoni R, Vivancos V, Giangrande A (1997) glide/gcm is expressed and required in the scavenger cell lineage. Dev Biol 191:118–130

    CAS  PubMed  Google Scholar 

  • Bidla G, Dushay MS, Theopold U (2007) Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J Cell Sci 120:1209–1215

    CAS  PubMed  Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    CAS  PubMed  Google Scholar 

  • Bras S, Martin-Lanneree S, Gobert V, Auge B, Breig O, Sanial M et al (2012) Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proc Natl Acad Sci U S A 109:4986–4991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun A, Lemaitre B, Lanot R, Zachary D, Meister M (1997) Drosophila Immunity: analysis of Larval Hemocytes by P-Element-Mediated Enhancer Trap. Genetics 147:623–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun A, Hoffmann JA, Meister M (1998) Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc Natl Acad Sci U S A 95:14337–14342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bridges CB (1916) Non-disjunction as proof of the chromosome theory of heredity. Genetics 1:1–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruckner K, Kockel L, Duchek P, Luque CM, Rorth P, Perrimon N (2004) The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell 7:73–84

    PubMed  Google Scholar 

  • Bultman SJ, Gebuhr TC, Magnuson T (2005) A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes Dev 19:2849–2861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Google Scholar 

  • Canon J, Banerjee U (2003) In vivo analysis of a developmental circuit for direct transcriptional activation and repression in the same cell by a Runx protein. Genes Dev 17:838–843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA et al (2003) Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 121:775–777

    CAS  PubMed  Google Scholar 

  • Carton Y, Frey F, Nappi AJ (2009) Parasite-induced changes in nitric oxide levels in Drosophila paramelanica. J Parasitol 95:1134–1141

    CAS  PubMed  Google Scholar 

  • Cerenius L, Lee BL, Soderhall K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271

    CAS  PubMed  Google Scholar 

  • Cerenius L, S-i K, Lee BL, Nonaka M, Söderhäll K (2010) Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35:575–583

    CAS  PubMed  Google Scholar 

  • Charroux B, Royet J (2009) Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci U S A 106:9797–9802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Fernandez J, Mische S, Courey AJ (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13:2218–2230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho NK, Keyes L, Johnson E, Heller J, Ryner L, Karim F et al (2002) Developmental control of blood cell migration by the drosophila VEGF pathway. Cell 108:865–876

    CAS  PubMed  Google Scholar 

  • Choudhary P, Varga-Weisz P (2007) ATP-dependent chromatin remodelling: action and reaction. Subcell Biochem 41:29–43

    PubMed  Google Scholar 

  • Christensen BM, Li J, Chen CC, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21:192–199

    CAS  PubMed  Google Scholar 

  • Crozatier M, Ubeda JM, Vincent A, Meister M (2004) Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol 2:E196

    PubMed Central  PubMed  Google Scholar 

  • Daga A, Karlovich CA, Dumstrei K, Banerjee U (1996) Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev 10:1194–1205

    CAS  PubMed  Google Scholar 

  • Dallman JE, Allopenna J, Bassett A, Travers A, Mandel G (2004) A conserved role but different partners for the transcriptional corepressor CoREST in fly and mammalian nervous system formation. J Neurosci 24:7186–7193

    CAS  PubMed  Google Scholar 

  • de Velasco B, Mandal L, Mkrtchyan M, Hartenstein V (2006) Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. Dev Genes Evol 216:39–51

    PubMed  Google Scholar 

  • Defaye A, Evans I, Crozatier M, Wood W, Lemaitre B, Leulier F (2009) Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infection. J Innate Immun 1:322–334

    CAS  PubMed  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    CAS  PubMed  Google Scholar 

  • Dragojlovic-Munther M, Martinez-Agosto JA (2012) Multifaceted roles of PTEN and TSC orchestrate growth and differentiation of Drosophila blood progenitors. Development 139:3752–3763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duvic B, Hoffmann JA, Meister M, Royet J (2002) Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Curr Biol 12:1923–1927

    CAS  PubMed  Google Scholar 

  • Fessler JH, Fessler LI (1989) Drosophila extracellular matrix. Annu Rev Cell Biol 5:309–339

    CAS  PubMed  Google Scholar 

  • Fessler LI, Nelson RE, Fessler JH (1994) Drosophila extracellular matrix. Methods Enzymol 245:271–294

    CAS  PubMed  Google Scholar 

  • Fisher KH, Wright VM, Taylor A, Zeidler MP, Brown S (2012) Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway. BMC Genomics 13:506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fossett N, Tevosian SG, Gajewski K, Zhang Q, Orkin SH, Schulz RA (2001) The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc Natl Acad Sci U S A 98:7342–7347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fossett N, Hyman K, Gajewski K, Orkin SH, Schulz RA (2003) Combinatorial interactions of Serpent, Lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Proc Natl Acad Sci 100:11451–11456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443

    CAS  PubMed  Google Scholar 

  • Franc NC, Heitzler P, Ezekowitz RA, White K (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284:1991–1994

    CAS  PubMed  Google Scholar 

  • Frandsen JL, Gunn B, Muratoglu S, Fossett N, Newfeld SJ (2008) Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc Natl Acad Sci U S A 105:14952–14957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frasch M (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374:464–467

    CAS  PubMed  Google Scholar 

  • Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ (2003) Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38:567–580

    CAS  PubMed  Google Scholar 

  • Galko MJ, Krasnow MA (2004) Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2:E239

    PubMed Central  PubMed  Google Scholar 

  • Gao Z, Huang Z, Olivey HE, Gurbuxani S, Crispino JD, Svensson EC (2010) FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J 29:457–468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garzino V, Pereira A, Laurenti P, Graba Y, Levis RW, Le Parco Y et al (1992) Cell lineage-specific expression of modulo, a dose-dependent modifier of variegation in Drosophila. EMBO J 11:4471–4479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gateff E (1978a) The genetics and epigenetics of neoplasms in Drosophila. Biol Rev Camb Philos Soc 53:123–168

    CAS  PubMed  Google Scholar 

  • Gateff E (1978b) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200:1448–1459

    CAS  PubMed  Google Scholar 

  • Golling G, Li L, Pepling M, Stebbins M, Gergen JP (1996) Drosophila homologs of the proto-oncogene product PEBP2/CBF beta regulate the DNA-binding properties of Runt. Mol Cell Biol 16:932–942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigorian M, Mandal L, Hartenstein V (2011) Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Dev Genes Evol 221:121–131

    PubMed  Google Scholar 

  • Hanratty WP, Dearolf CR (1993) The Drosophila tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol Gen Genet 238:33–37

    CAS  PubMed  Google Scholar 

  • Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J 14:2857–2865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatlen MA, Wang L, Nimer SD (2012) AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 6:248–262

    PubMed  Google Scholar 

  • Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR (2002) Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1:63–74

    CAS  PubMed  Google Scholar 

  • Holz A, Bossinger B, Strasser T, Janning W, Klapper R (2003) The two origins of hemocytes in Drosophila. Development 130:4955–4962

    CAS  PubMed  Google Scholar 

  • Hota SK, Bartholomew B (2011) Diversity of operation in ATP-dependent chromatin remodelers. Biochim Biophys Acta 1809:476–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Li X, Valverde K, Fu X, Noguchi C, Qiu Y et al (2009) LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc Natl Acad Sci U S A 106:10141–10146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu G, Schones DE, Cui K, Ybarra R, Northrup D, Tang Q et al (2011) Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1. Genome Res 21:1650–1658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu G, Cui K, Northrup D, Liu C, Wang C, Tang Q et al (2013) H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12:180–192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D et al (2005) New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 7:335–350

    CAS  PubMed  Google Scholar 

  • Jennings BH, Pickles LM, Wainwright SM, Roe SM, Pearl LH, Ish-Horowicz D (2006) Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol Cell 22:645–655

    CAS  PubMed  Google Scholar 

  • Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K et al (2009) H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat Genet 41:941–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson KC, Metzendorf C, Soderhall K (2005) Microarray analysis of immune challenged Drosophila hemocytes. Exp Cell Res 305:145–155

    CAS  PubMed  Google Scholar 

  • Jung SH, Evans CJ, Uemura C, Banerjee U (2005) The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132:2521–2533

    CAS  PubMed  Google Scholar 

  • Kaminker JS, Singh R, Lebestky T, Yan H, Banerjee U (2001) Redundant function of runt domain binding partners, big brother and brother, during drosophila development. Development 128:2639–2648

    CAS  PubMed  Google Scholar 

  • Kania MA, Bonner AS, Duffy JB, Gergen JP (1990) The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev 4:1701–1713

    CAS  PubMed  Google Scholar 

  • Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E et al (1999) Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10:345–355

    CAS  PubMed  Google Scholar 

  • Klinedinst SL, Bodmer R (2003) Gata factor Pannier is required to establish competence for heart progenitor formation. Development 130:3027–3038

    CAS  PubMed  Google Scholar 

  • Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M et al (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:335–346

    CAS  PubMed  Google Scholar 

  • Kramer SG, Jinks TM, Schedl P, Gergen JP (1999) Direct activation of sex-lethal transcription by the Drosophila runt protein. Development 126:191–200

    CAS  PubMed  Google Scholar 

  • Krzemien J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325–328

    CAS  PubMed  Google Scholar 

  • Kuchenbauer F, Schnittger S, Look T, Gilliland G, Tenen D, Haferlach T et al (2006) Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t(8;21)/AML1-ETO. Br J Haematol 134:616–619

    CAS  PubMed  Google Scholar 

  • Kurucz E, Markus R, Zsamboki J, Folkl-Medzihradszky K, Darula Z, Vilmos P et al (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol 17:649–654

    CAS  PubMed  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd et al (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087

    CAS  PubMed  Google Scholar 

  • Kwon SY, Xiao H, Glover BP, Tjian R, Wu C, Badenhorst P (2008) The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev Biol 316:538–547

    CAS  PubMed  Google Scholar 

  • Kwon SY, Xiao H, Wu C, Badenhorst P (2009) Alternative splicing of NURF301 generates distinct NURF chromatin remodeling complexes with altered modified histone binding specificities. PLoS Genet 5:e1000574

    PubMed Central  PubMed  Google Scholar 

  • Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA (2000) Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci U S A 97:11427–11432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257

    CAS  PubMed  Google Scholar 

  • Lebestky T, Chang T, Hartenstein V, Banerjee U (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288:146–149

    CAS  PubMed  Google Scholar 

  • Lebestky T, Jung SH, Banerjee U (2003) A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev 17:348–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S et al (1998) Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci 95:11590–11595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li LH, Gergen JP (1999) Differential interactions between brother proteins and Runt domain proteins in the Drosophila embryo and eye. Development 126:3313–3322

    CAS  PubMed  Google Scholar 

  • Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L et al (2010) AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 37:429–437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo H, Hanratty WP, Dearolf CR (1995) An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J 14:1412–1420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM et al (1997) Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol 17:1562–1571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makhijani K, Alexander B, Tanaka T, Rulifson E, Bruckner K (2011) The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 138:5379–5391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandal L, Banerjee U, Hartenstein V (2004) Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat Genet 36:1019–1023

    CAS  PubMed  Google Scholar 

  • Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320–324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mannstadt M, Holick E, Zhao W, Juppner H (2011) Mutational analysis of GCMB, a parathyroid-specific transcription factor, in parathyroid adenoma of primary hyperparathyroidism. J Endocrinol 210:165–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manoukian AS, Krause HM (1993) Control of segmental asymmetry in Drosophila embryos. Development 118:785–796

    CAS  PubMed  Google Scholar 

  • Markus R, Laurinyecz B, Kurucz E, Honti V, Bajusz I, Sipos B et al (2009) Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc Natl Acad Sci U S A 106:4805–4809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906

    CAS  PubMed  Google Scholar 

  • Medvinsky AL, Samoylina NL, Muller AM, Dzierzak EA (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364:64–67

    CAS  PubMed  Google Scholar 

  • Miccio A, Wang Y, Hong W, Gregory GD, Wang H, Yu X et al (2010) NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 29:442–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minakhina S, Steward R (2006) Melanotic mutants in Drosophila: pathways and phenotypes. Genetics 174:253–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348

    CAS  PubMed  Google Scholar 

  • Mukherjee T, Kim WS, Mandal L, Banerjee U (2011) Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332:1210–1213

    CAS  PubMed  Google Scholar 

  • Muntean AG, Hess JL (2012) The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 7:283–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nam HJ, Jang IH, Asano T, Lee WJ (2008) Involvement of pro-phenoloxidase 3 in lamellocyte-mediated spontaneous melanization in Drosophila. Mol Cells 26:606–610

    CAS  PubMed  Google Scholar 

  • Nappi AJ, Streams FA (1969) Haemocytic reactions of Drosophila melanogaster to the parasites Pseudocoila mellipes and P. bochei. J Insect Physiol 15:1551–1566

    Google Scholar 

  • Ogawa H, Ueda T, Aoyama T, Aronheim A, Nagata S, Fukunaga R (2003) A SWI2/SNF2-type ATPase/helicase protein, mDomino, interacts with myeloid zinc finger protein 2A (MZF-2A) to regulate its transcriptional activity. Genes Cells 8:325–339

    CAS  PubMed  Google Scholar 

  • Orkin SH (1995) Transcription factors and hematopoietic development. J Biol Chem 270:4955–4958

    CAS  PubMed  Google Scholar 

  • Osman D, Gobert V, Ponthan F, Heidenreich O, Haenlin M, Waltzer L (2009) A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci U S A 106:12043–12048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461:537–541

    CAS  PubMed  Google Scholar 

  • Paroush Z, Finley RL Jr, Kidd T, Wainwright SM, Ingham PW, Brent R et al (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79:805–815

    CAS  PubMed  Google Scholar 

  • Patel SR, Bhumbra SS, Paknikar RS, Dressler GR (2012) Epigenetic mechanisms of Groucho/Grg/TLE mediated transcriptional repression. Mol Cell 45:185–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Philips JA, Rubin EJ, Perrimon N (2005) Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309:1251–1253

    CAS  PubMed  Google Scholar 

  • Poulson DF (1950) Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster Meigen. In: Demerec M (ed) Biology of Drosophila. Hafner, New York, NY, pp 168–274

    Google Scholar 

  • Qiu P, Pan PC, Govind S (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125:1909–1920

    CAS  PubMed  Google Scholar 

  • Querfurth E, Schuster M, Kulessa H, Crispino JD, Doderlein G, Orkin SH et al (2000) Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev 14:2515–2525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL et al (2005) Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123:233–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramet M, Pearson A, Manfruelli P, Li X, Koziel H, Gobel V et al (2001) Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15:1027–1038

    CAS  PubMed  Google Scholar 

  • Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416:644–648

    CAS  PubMed  Google Scholar 

  • Rehorn KP, Thelen H, Michelson AM, Reuter R (1996) A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 122:4023–4031

    CAS  PubMed  Google Scholar 

  • Rizki MTM (1957a) Alterations in the haemocyte population of Drosophila melanogaster. J Morphol 100:437–458

    Google Scholar 

  • Rizki MTM (1957b) Tumor formationin relation to metamorphosis in Drosophila melanogaster. J Morphol 100:459–472

    Google Scholar 

  • Rizki TM (1978) The circulatory system and associated cells and tissues. In: Wright TRF, Ashburner M (eds) Genetics and biology of Drosophila, vol 2b. Academic, London, pp 398–451

    Google Scholar 

  • Rizki MT, Rizki RM (1959) Functional significance of the crystal cells in the larva of Drosophila melanogaster. J Biophys Biochem Cytol 5:235–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizki TM, Rizki RM (1974) Basement membrane abnormalities in melanotic tumour formation in Drosophila. Experientia 30:543–546

    CAS  PubMed  Google Scholar 

  • Rizki TM, Rizki RM (1980) Properties of the larval hemocytes of Drosophila melanogaster. Experientia 36:1223–1226

    Google Scholar 

  • Rizki TM, Rizki RM (1992) Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol 16:103–110

    CAS  PubMed  Google Scholar 

  • Rodriguez A, Zhou Z, Tang ML, Meller S, Chen J, Bellen H et al (1996) Identification of immune system and response genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster. Genetics 143:929–940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rorth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A 93:12418–12422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rorth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM et al (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057

    CAS  PubMed  Google Scholar 

  • Ruhf ML, Braun A, Papoulas O, Tamkun JW, Randsholt N, Meister M (2001) The domino gene of Drosophila encodes novel members of the SWI2/SNF2 family of DNA-dependent ATPases, which contribute to the silencing of homeotic genes. Development 128:1429–1441

    CAS  PubMed  Google Scholar 

  • Russo J, Dupas S, Frey F, Carton Y, Brehelin M (1996) Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 112(Pt 1):135–142

    PubMed  Google Scholar 

  • Saleque S, Kim J, Rooke HM, Orkin SH (2007) Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 27:562–572

    CAS  PubMed  Google Scholar 

  • Salt GW (1970) The cellular defence reactions of insects, vol 16, Cambridge monographs in experimental biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    CAS  PubMed  Google Scholar 

  • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19:857–864

    CAS  PubMed  Google Scholar 

  • Shim J, Mukherjee T, Banerjee U (2012) Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol 14:394–400

    CAS  PubMed  Google Scholar 

  • Sinenko SA, Mandal L, Martinez-Agosto JA, Banerjee U (2009) Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev Cell 16:756–763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinenko SA, Hung T, Moroz T, Tran QM, Sidhu S, Cheney MD et al (2010) Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 116:4612–4620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith ER, Lin C, Garrett AS, Thornton J, Mohaghegh N, Hu D et al (2011) The little elongation complex regulates small nuclear RNA transcription. Mol Cell 44:954–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song H, Hasson P, Paroush Z, Courey AJ (2004) Groucho oligomerization is required for repression in vivo. Mol Cell Biol 24:4341–4350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorrentino RP, Tokusumi T, Schulz RA (2007) The friend of GATA protein U-shaped functions as a hematopoietic tumor suppressor in Drosophila. Dev Biol 311:311–323

    CAS  PubMed  Google Scholar 

  • Sparrow JC (1978) Melanotic tumours. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2b. Academic, London, pp 277–313

    Google Scholar 

  • Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 5:21–30

    CAS  PubMed  Google Scholar 

  • Stathopoulos A, Tam B, Ronshaugen M, Frasch M, Levine M (2004) pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 18:687–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stofanko M, Kwon SY, Badenhorst P (2008) A misexpression screen to identify regulators of Drosophila larval hemocyte development. Genetics 180:253–267

    PubMed Central  PubMed  Google Scholar 

  • Stofanko M, Kwon SY, Badenhorst P (2010) Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 5:e14051

    PubMed Central  PubMed  Google Scholar 

  • Stroschein-Stevenson SL, Foley E, O’Farrell PH, Johnson AD (2006) Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol 4:e4

    PubMed Central  PubMed  Google Scholar 

  • Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA, Hennessy EJ et al (2005) Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 170:477–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837

    CAS  PubMed  Google Scholar 

  • Terriente-Felix A, Li J, Collins S, Mulligan A, Reekie I, Bernard F et al (2013) Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 140:926–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokusumi T, Tokusumi Y, Hopkins DW, Shoue DA, Corona L, Schulz RA (2011) Germ line differentiation factor bag of marbles is a regulator of hematopoietic progenitor maintenance during Drosophila hematopoiesis. Development 138:3879–3884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokusumi Y, Tokusumi T, Shoue DA, Schulz RA (2012) Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland. PLoS One 7:e41604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trojer P, Li G, Sims RJ 3rd, Vaquero A, Kalakonda N, Boccuni P et al (2007) L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129:915–928

    CAS  PubMed  Google Scholar 

  • Tsuda L, Kaido M, Lim YM, Kato K, Aigaki T, Hayashi S (2006) An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO J 25:3191–3202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waltzer L, Ferjoux G, Bataille L, Haenlin M (2003) Cooperation between the GATA and RUNX factors serpent and lozenge during Drosophila hematopoiesis. EMBO J 22:6516–6525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward EJ, Skeath JB (2000) Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. Development 127:4959–4969

    CAS  PubMed  Google Scholar 

  • Watson KL, Johnson TK, Denell RE (1991) Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev Genet 12:173–187

    CAS  PubMed  Google Scholar 

  • Wertheim B, Kraaijeveld AR, Schuster E, Blanc E, Hopkins M, Pletcher SD et al (2005) Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol 6:R94

    PubMed Central  PubMed  Google Scholar 

  • Wildonger J, Mann RS (2005) The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development 132:2263–2272

    CAS  PubMed  Google Scholar 

  • Williams MJ (2009) The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells. BMC Immunol 10:17

    PubMed Central  PubMed  Google Scholar 

  • Wu X, Golden K, Bodmer R (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169:619–628

    CAS  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J et al (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90

    CAS  PubMed  Google Scholar 

  • Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM et al (2001) Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 8:531–543

    CAS  PubMed  Google Scholar 

  • You A, Tong JK, Grozinger CM, Schreiber SL (2001) CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc Natl Acad Sci U S A 98:1454–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 98:10398–10403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I et al (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci U S A 101:14192–14197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123:219–231

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Badenhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Badenhorst, P. (2014). What Can We Learn from Flies: Epigenetic Mechanisms Regulating Blood Cell Development in Drosophila . In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_2

Download citation

Publish with us

Policies and ethics