Skip to main content

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1086 Accesses

Abstract

The combination of large-scale genomic studies and computational tools has revealed the complexity and dynamics of the mechanisms that regulate the inflammatory response. The specificity of the inflammatory gene expression program in innate immune cells, such as macrophages, reflects a simple underlying mechanism: transcription factors controlling macrophage differentiation generate a unique, cell type-specific repertoire of accessible genomic regions that enable the recruitment of stimulus-induced transcription factors. This mechanism constrains the activity of non-cell type-specific inflammatory transcription factors at macrophage-specific regulatory elements. In this chapter, we provide an overview of transcriptional regulation in macrophages and we discuss the recent progresses on how the interplay between genomic and epigenomic information results in a fine-tuned inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austenaa L et al (2012) The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity 36:572–585

    Article  CAS  PubMed  Google Scholar 

  • Ayton PM, Chen EH, Cleary ML (2004) Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 24:10470–10478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bakri Y et al (2005) Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood 105:2707–2716

    Article  CAS  PubMed  Google Scholar 

  • Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Bhatt DM et al (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150:279–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blow MJ et al (2010) ChIP-Seq identification of weakly conserved heart enhancers. Nat Genet 42:806–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144:327–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49:825–837

    Article  CAS  PubMed  Google Scholar 

  • Carotta S et al (2010) The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32:628–641

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2012) Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 109:E2865–E2874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cirillo LA, Zaret KS (1999) An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell 4:961–969

    Article  CAS  PubMed  Google Scholar 

  • Cockerill PN (2011) Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J 278:2182–2210

    Article  CAS  PubMed  Google Scholar 

  • Creyghton MP et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931–21936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dahl R et al (2003) Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 4:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Dakic A et al (2005) PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201:1487–1502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Santa F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384

    Article  PubMed Central  PubMed  Google Scholar 

  • Deaton AM, Bird A (2009) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  Google Scholar 

  • DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–1441

    Article  CAS  PubMed  Google Scholar 

  • Dunham I et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  PubMed  Google Scholar 

  • Ernst J et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fenouil R et al (2012) CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res 22:2399–2408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garber M et al (2012) A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell 47:810–822

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghisletti S, Natoli G (2013) Deciphering cis-regulatory control in inflammatory cells. Philos Trans R Soc Lond B Biol Sci 368:20120370

    Article  PubMed  Google Scholar 

  • Ghisletti S et al (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • Giresi PG et al (2007) FAIRE (Formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves DC, Horng T, Medzhitov R (2009) Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138:129–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heintzman ND et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  CAS  PubMed  Google Scholar 

  • Heintzman ND et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinz S et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60:281–319

    Article  CAS  PubMed  Google Scholar 

  • Hu G et al (2012) H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12:180–192

    Article  PubMed Central  PubMed  Google Scholar 

  • Iwasaki H et al (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590–1600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  • Kawane K et al (2006) Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443:998–1002

    Article  CAS  PubMed  Google Scholar 

  • Kim TK et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kueh HY et al (2013) Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341:670–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    Article  CAS  PubMed  Google Scholar 

  • Leddin M et al (2011) Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood 117:2827–2838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Skalnik DG (2005) CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 280:41725–41731

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Skalnik DG (2008) Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 28:609–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z et al (2012) Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation. Cell 151:1608–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtinger M et al (2012) RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO J 31:4318–4333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magnani L, Eeckhoute J, Lupien M (2011) Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 27:465–474

    Article  CAS  PubMed  Google Scholar 

  • McKercher SR et al (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15:5647–5658

    CAS  PubMed Central  PubMed  Google Scholar 

  • McPherson CE et al (1993) An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell 75:387–398

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy CA et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murray PJ, Smale ST (2012) Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nat Immunol 13:916–924

    Article  CAS  PubMed  Google Scholar 

  • Natoli G (2010) Maintaining cell identity through global control of genomic organization. Immunity 33:12–24

    Article  CAS  PubMed  Google Scholar 

  • Natoli G, Andrau JC (2011) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19

    Article  Google Scholar 

  • Natoli G, Ghisletti S, Barozzi I (2011) The genomic landscapes of inflammation. Genes Dev 25:101–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neph S et al (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:83–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nerlov C, Graf T (1998) PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 12:2403–2412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nutt SL et al (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201:221–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okin D, Medzhitov R (2012) Evolution of inflammatory diseases. Curr Biol 22:R733–R740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olson MC et al (1995) PU. 1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 3:703–714

    Article  CAS  PubMed  Google Scholar 

  • Ostuni R et al (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152:157–171

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio LA et al (2007) Predicting tissue-specific enhancers in the human genome. Genome Res 17:201–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rada-Iglesias A et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Carrozzi VR et al (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138:114–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7:105–117

    Article  CAS  PubMed  Google Scholar 

  • Rosenbauer F et al (2006) Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 38:27–37

    Article  CAS  PubMed  Google Scholar 

  • Sabo PJ et al (2006) Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 3:511–518

    Article  CAS  PubMed  Google Scholar 

  • Schones DE et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  CAS  PubMed  Google Scholar 

  • Schonheit J et al (2013) PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment. Cell Rep 3:1617–1628

    Article  PubMed  Google Scholar 

  • Scott EW et al (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577

    Article  CAS  PubMed  Google Scholar 

  • Serbina NV et al (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–120

    Article  CAS  PubMed  Google Scholar 

  • Smale ST (2010) Selective transcription in response to an inflammatory stimulus. Cell 140:833–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AM et al (2009) Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med 206:1883–1897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song L et al (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21:1757–1767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  PubMed  Google Scholar 

  • Staber PB et al (2013) Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol Cell 49:934–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Thurman RE et al (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valouev A et al (2011) Determinants of nucleosome organization in primary human cells. Nature 474:516–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Visel A et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei GH et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29:2147–2160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xi H et al (2007) Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet 3:e136

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zentner GE, Tesar PJ, Scacheri PC (2011) Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 21:1273–1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    Article  PubMed  Google Scholar 

  • Zlatanova J, Thakar A (2008) H2A.Z: view from the top. Structure 16:166–179

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Ghisletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Polletti, S., Curina, A., Natoli, G., Ghisletti, S. (2014). The Macrophage Epigenome and the Control of Inflammatory Gene Expression. In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_15

Download citation

Publish with us

Policies and ethics