Skip to main content

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1075 Accesses

Abstract

The processes of eukaryotic development and cellular differentiation are under transcriptional and epigenetic control by essentially the same mechanisms in all multi-cellular organisms. Here we briefly summarise the general principles of chromatin structure and gene regulation. Because the bulk of the chromatin in the nucleus exists in a highly condensed state, the main level at which gene expression is controlled is at the level of the accessibility of genes and their regulatory elements to the transcription apparatus. In this article we will describe the complex machinery that covalently modifies the DNA and histones, remodels chromatin structure and allows transcription factors to find their targets within regulatory elements. We will establish the concept that epigenetic and transcriptional regulation involves a finely tuned balance between activators and repressors, which function via a huge variety of mechanisms to either introduce or erase modifications to the basic chromatin template.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CC, Workman JL (1995) Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15:1405–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballare C, Castellano G, Gaveglia L et al (2013) Nucleosome-driven transcription factor binding and gene regulation. Mol Cell 49:67–79

    CAS  PubMed  Google Scholar 

  • Blobel GA, Kadauke S, Wang E, Lau AW, Zuber J, Chou MM, Vakoc CR (2009) A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol Cell 36:970–983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bulut-Karslioglu A, Perrera V, Scaranaro M, de la Rosa-Velazquez IA et al (2012) A transcription factor-based mechanism for mouse heterochromatin formation. Nat Struct Mol Biol 19:1023–30

    Article  CAS  PubMed  Google Scholar 

  • Caravaca JM, Donahue G, Becker JS, He X, Vinson C, Zaret KS (2013) Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev 27:251–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cirillo LA, Zaret KS (2007) Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J Mol Biol 366:720–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9:279–289

    Article  CAS  PubMed  Google Scholar 

  • Cockerill PN (2011) Structure and function of active chromatin and DNase I Hypersensitive Sites. FEBS J 278(13):2182–2210

    Article  CAS  PubMed  Google Scholar 

  • Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, Kouzarides T (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461:819–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL et al (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Follmer NE, Wani AH, Francis NJ (2012) A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39:886–900

    Article  CAS  PubMed  Google Scholar 

  • Guccione E, Bassi C, Casadio F et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937

    Article  CAS  PubMed  Google Scholar 

  • Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR (2012) Dynamics and memory of heterochromatin in living cells. Cell 149:1447–1460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatta M, Cirillo LA (2007) Chromatin opening and stable perturbation of core histone: DNA contacts by FoxO1. J Biol Chem 282:35583–35593

    Article  CAS  PubMed  Google Scholar 

  • Higgs DR, Engel JD, Stamatoyannopoulos G (2012) Thalassaemia. Lancet 379:373–383

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Kireev I, Plutz M, Ashourian N, Belmont AS (2009) Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J Cell Biol 185:87–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram RM, Valeaux S, Wilson N et al (2011) Differential regulation of sense and antisense promoter activity at the Csf1R locus in B cells by the transcription factor PAX5. Exp Hematol 39(730–740):e731–e732

    Google Scholar 

  • Kadauke S, Blobel GA (2012) “Remembering” tissue-specific transcription patterns through mitosis. Cell Cycle 11:3911–3912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kadauke S, Udugama MI, Pawlicki JM et al (2012) Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1. Cell 150:725–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamakaka RT, Thomas JO (1990) Chromatin structure of transcriptionally competent and repressed genes. EMBO J 9:3997–4006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kireev I, Lakonishok M, Liu W, Joshi VN, Powell R, Belmont AS (2008) In vivo immunogold labeling confirms large-scale chromatin folding motifs. Nat Methods 5:311–313

    CAS  PubMed  Google Scholar 

  • Kirmizis A, Santos-Rosa H, Penkett CJ et al (2007) Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449:928–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lefevre P, Witham J, Lacroix CE, Cockerill PN, Bonifer C (2008) The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol Cell 32:129–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lever MA, Th’ng JP, Sun X, Hendzel MJ (2000) Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408:873–876

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Balbas MA, Dey A, Rabindran SK, Ozato K, Wu C (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38

    Article  CAS  PubMed  Google Scholar 

  • Misteli T, Gunjan A, Hock R, Bustin M, Brown DT (2000) Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–881

    Article  CAS  PubMed  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  CAS  PubMed  Google Scholar 

  • Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381:816–825

    Article  CAS  PubMed  Google Scholar 

  • Schmiedeberg L, Weisshart K, Diekmann S, Meyer Zu Hoerste G, Hemmerich P (2004) High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol Biol Cell 15:2819–2833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekiya T, Muthurajan UM, Luger K, Tulin AV, Zaret KS (2009) Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev 23:804–809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  • Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20:341–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  CAS  PubMed  Google Scholar 

  • Suganuma T, Workman JL (2008) Crosstalk among histone modifications. Cell 135:604–607

    Article  CAS  PubMed  Google Scholar 

  • Syed SH, Goutte-Gattat D, Becker N et al (2010) Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc Natl Acad Sci USA 107:9620–9625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tropberger P, Pott S, Keller C et al (2013) Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152:859–872

    Article  CAS  PubMed  Google Scholar 

  • Voss TC, Schiltz RL, Sung MH et al (2011) Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146:544–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams SK, Truong D, Tyler JK (2008) Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci USA 105:9000–9005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolffe AP (1989) Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1. EMBO J 8:527–537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17–25

    Article  CAS  PubMed  Google Scholar 

  • Zaidi SK, Young DW, Montecino M, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2011) Bookmarking the genome: maintenance of epigenetic information. J Biol Chem 286:18355–18361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI (2012) RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335:96–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Constanze Bonifer or Peter N. Cockerill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonifer, C., Cockerill, P.N. (2014). The Epigenetic Regulatory Machinery. In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_1

Download citation

Publish with us

Policies and ethics