Skip to main content

Structural Dynamics and Viscoelastic Passive Damping Treatments

  • Chapter
  • First Online:
Modern Mechanical Engineering

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Viscoelastic damping treatments are an interesting solution for the vibration control of light and large structures. Despite the simplicity of the damping mechanism that characterizes this vibration control system, the design of these treatments is complex and requires some specific strategies to handle properly the description of the material behavior, to represent accurately the kinematics of all the layers of the damped structure and to apply optimization procedures to improve the damping efficiency. This Chapter presents a review on viscoelastic damping treatments, and those important issues related to the material characterization, numerical modeling and optimization are thoroughly analyzed and explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM (1998) E756-98 standard test method for measuring vibration-damping properties of materials. In: Annual book of ASTM standards, vol 04.06. ASTM, New York

    Google Scholar 

  2. Jones DIG (2001) Handbook of viscoelastic vibration damping, 1st edn. Wiley, New York

    Google Scholar 

  3. 3M (1993) ScotchDamp TM vibration control systems. 3M Industrial Specialties Division, St Paul, Tarsus

    Google Scholar 

  4. Killian JW, Lu YP (1984) A finite element modeling approximation for damping material used in constrained damped structures. J Sound Vib 97(2):352–354

    Article  Google Scholar 

  5. Moreira R, Rodrigues JD (2004) Constrained damping layer treatments: finite element modeling. J Vib Control 10(4):575–595

    Article  MATH  Google Scholar 

  6. Moreira RAS, Rodrigues JD, Ferreira AJM (2006) A generalized layerwise finite element for multi-layer damping treatments. Comp Mech 37(5):426–444

    Article  MATH  Google Scholar 

  7. Reddy JN (1997) Mechanics of laminated composite plates: theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  8. Moreira RAS, Rodrigues JD (2006) A layerwise model for thin soft core sandwich plates. Comp Struct 84(19–20):1256–1263

    Article  Google Scholar 

  9. Moreira RAS, Melo FJ, Rodrigues JD (2010) Static and dynamic characterization of cork compounds for sandwich beam cores. J Mater Sci 45(12):3350–3366

    Article  Google Scholar 

  10. Lesieutre GA, Govindswamy K (1996) Finite element modeling of frequency-dependent and temperature-dependent dynamic behavior of viscoelastic materials in simple shear. Int J Solids Struct 33(3):419–432

    Article  MATH  Google Scholar 

  11. Gaul L (1989) Structural damping in frequency and time domain, pp 177–185. In: 7th international modal analysis conference (IMAC VII), Las Vegas

    Google Scholar 

  12. Moreira RAS, Corte-Real JD, Rodrigues JD (2010) A generalized frequency–temperature viscoelastic model. Shock Vib 17(4–5):407–418

    Google Scholar 

  13. McTavish DJ, Hughes PC (1993) Modeling of linear viscoelastic space structures. J Vib Acoustics 115:103–110

    Article  Google Scholar 

  14. Pritz T (1998) Frequency dependences of complex moduli and complex Poisson’s ratio of real solid materials. J Sound Vib 214(1):83–104

    Article  Google Scholar 

  15. Muravyov A (1998) Forced vibration responses of a viscoelastic structure. J Sound Vib 218(5):892–907

    Article  Google Scholar 

  16. Lesieutre GA, Bianchini E (1995) Time domain modeling of linear viscoelastic using anelastic displacement fields. J Vib Acoustics 117:424–430

    Article  Google Scholar 

  17. Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748

    Article  MATH  Google Scholar 

  18. Bagley RL, Torvik PJ (1985) Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J 23(6):918–925

    Article  MATH  Google Scholar 

  19. Schmidt A, Gaul L (2001) FE implementation of viscoelastic constitutive stress–strain relations involving fractional time derivatives, pp 79–89. In: 2nd European conference on constitutive models for rubber, Hannover, 10–12, Sept 2001

    Google Scholar 

  20. Schmidt A, Gaul L (2002) Application of fractional calculus to viscoelastically damped structures in the finite element method, pp 297–306. In: International conference on structural dynamics modelling, Madeira, 3–5, June 2002

    Google Scholar 

  21. Schmidt A, Gaul L (2002) Parameter identification and FE implementation of a viscoelastic constitutive equation using fractional derivatives. Applied Mathematics and Mechanics 1(1):153–154

    MATH  Google Scholar 

  22. Oldham KB, Spanier J (1974) The fractional Calculus. Academic Press, NY

    MATH  Google Scholar 

  23. Enelund M (1996) Fractional calculus and linear viscoelasticity in structural dynamics. PhD thesis, Chalmers University of Technology. Goteborg

    Google Scholar 

  24. Cupial P, Niziol J (1995) Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer. J Sound Vib 183(1):99–114

    Article  MATH  Google Scholar 

  25. Kung SW, Singh R (1998) Complex eigensolutions of rectangular plates with damping patches. J Sound Vib 216(1):1–28

    Article  MATH  Google Scholar 

  26. Johnson CD, Kienholz DA (1982) Finite element prediction of damping structures with constrained viscoelastic layers. AIAA J 20(9):1284–1290

    Article  Google Scholar 

  27. Kelly WJ, Stevens KK (1989) Application of perturbation techniques to the modal analysis of a shaft with added viscoelastic damping, 1516–1520. In: 7th international modal analysis conference (IMAC VII), Las Vegas

    Google Scholar 

  28. Lin RM, Lim MK (1996) Complex eigensensitivity-based characterization of structures with viscoelastic damping. JASME 100(5):3182–3191

    Google Scholar 

  29. Balmès E (1996) Super-element representation of a model with frequency dependent properties. International Seminar Modal Analysis, Leuven, Belgium, pp 1767–1778

    Google Scholar 

  30. Balmès E (1997) Model reduction for systems with frequency dependent damping properties, pp 223–229. In: 15th International modal analysis conference (IMAC XV), Orlando

    Google Scholar 

  31. Moreira RAS, Dias Rodrigues J (2010) Multilayer damping treatments: Modeling and experimental assessment. J Sandwich Struct Mater 12(2):181–198

    Article  Google Scholar 

  32. Sher BR, Moreira RAS (2013) Dimensionless analysis of constrained damping treatments. Compos Struct 99:241–254

    Article  Google Scholar 

  33. Van Vuure AW, Verpoest I, Ko FK (2001) Sandwich-fabric panels as spacers in a constrained layer structural damping application. Compos B 32:11–19

    Article  Google Scholar 

  34. Alberts TE, Xia H (1995) Design and analysis of fiber enhanced viscoelastic damping polymers. J Vib Acoust 117:398–404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. S. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreira, R.A.S. (2014). Structural Dynamics and Viscoelastic Passive Damping Treatments. In: Davim, J. (eds) Modern Mechanical Engineering. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45176-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45176-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45175-1

  • Online ISBN: 978-3-642-45176-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics