Skip to main content

Detectors for Electron and X-ray Scattering and Imaging Experiments

  • Chapter
  • First Online:
In-situ Materials Characterization

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 193))

  • 2920 Accesses

Abstract

Suitable detectors for these expensive and highly complex experimental instruments described in the previous chapters are a key factor to consider, primarily because if one cannot visualize or record the experimental results with an appropriate detector, any experiment will fail. The general challenge for all position-, energy-, and time-resolving detector systems is the fulfillment of stringent requirements for direct X-ray and electron detection experiments. These include a priori a high detection sensitivity and efficiency, but most important is coping with extremely high flux (1012 highly energetic X-ray photons or 108 300 kV electrons per second), exhibiting appropriate radiation hardness to maintain proper detection sensitivity and operability, low electronic noise for finest energy resolution in single-photon counting mode, and high frame rates for high time resolution. Parameters such as the Modulation Transfer Function (MTF), the Detector Quantum Efficiency (DQE), the dynamic range, pixel size, sensitivity, linearity, uniformity, background noise, read out speed, and reliability (or life time) among other characteristics will need to be considered to decide which detector design is best for what application. There are a variety of designs in the development and/or prototype stage. Costs are high, because most are produced using expensive wafer fabrication processes. A point of consideration is flexibility, adaptability, and how swift detector parameters can be changed. The trend at high-end, multi-national, multi-user scientific research facilities (Synchrotrons, FELs) however, is to operate dedicated, non-transferable detectors for specialized applications, whereas the medium to small scale research facilities may well decide for a more versatile, multi-purpose detector. The following sections will address detectors for electrons and detectors for X-ray photons separately. Development efforts for these detector types overlap, in part due to the high costs involved, and in part due to the compatibility of some developmental stages and components for both detector types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Ponchut, J. Synchrotron Radiat. 13, 195 (2006)

    Article  Google Scholar 

  2. J.D. Dainty, R. Shaw, Image Science (Academic Press, London, 1974)

    Google Scholar 

  3. K.H. Herrmann, D. Krahl, Advances in Optical and Electron Microscopy, vol. 9 (Academic Press, London, 1984), p. 1

    Google Scholar 

  4. K. Ishizuka, Ultramicroscopy 52, 7 (1993)

    Article  Google Scholar 

  5. J.M. Zuo, Ultramicroscopy 66, 21 (1996)

    Article  Google Scholar 

  6. A.L. Weickenmeier, W. Nüchter, J. Mayer, Optik 99, 147 (1995)

    Google Scholar 

  7. O.L. Krivanek, P.E. Mooney, Ultramicroscopy 49, 95 (1993)

    Article  Google Scholar 

  8. W.J. de Ruijter, J.K. Weiss, Rev. Sci. Instrum. 63, 4314 (1992)

    Article  ADS  Google Scholar 

  9. K. Downing, D.A. Grano, Ultramicroscopy 7, 381 (1982)

    Article  Google Scholar 

  10. P.J.W. Noble, IEEE Trans. Electr. Dev. ED15, 202 (1968)

    Google Scholar 

  11. S.G. Chamberlain, IEEE J. Sol. Stat. Circ. SC4, 333 (1969)

    Google Scholar 

  12. P.K. Weimer, W.S. Pike, G. Sadasiv, F.V. Shallcross, L. Meray-Horvath, IEEE Spectr. 6, 52 (1969)

    Article  Google Scholar 

  13. E.R. Fossum, Proc. SPIE 1900, 2 (1993)

    Article  ADS  Google Scholar 

  14. B. Dierickx, G. Meyants, D. Scheffer, in Proceedings of IEEE CCD & AIS Workshop (1997), p. P1

    Google Scholar 

  15. G. Deptuch, Nucl. Instrum. Meth. Phys. Res. A, 543, 537 (2005)

    Google Scholar 

  16. G. Mettivier, Nucl. Instrum. Meth. Phys. Res. A, 516, 554 (2004)

    Google Scholar 

  17. S.R. Amendolia, et al., Nucl. Instrum. Meth. Phys. Res. A, 466, 74 (2001)

    Google Scholar 

  18. R.H. Richter et al., Nucl. Instrum. Meth. Phys. Res. A, 511, 250 (2003)

    Google Scholar 

  19. M. Battaglia et al., Nucl. Instrum Meth. Phys. Res. A, 608, 363 (2009)

    Google Scholar 

  20. G. McMullan et al., Ultramicroscopy 107, 401 (2007)

    Article  Google Scholar 

  21. P. Bartl et al., Nucl. Instrum. Meth. Phys. Res. A, 591, 314 (2007)

    Google Scholar 

  22. R. Turchetta et al., Nucl. Instrum. Meth. Phys. Res. A, 458, 677 (2001)

    Google Scholar 

  23. J. Matheson et al., Nucl. Instrum. Meth. Phys. Res. A, 608, 199 (2009)

    Google Scholar 

  24. A. Blue et al., Nucl. Inst. Meth. Phys. Res. A, 581, 287 (2007)

    Google Scholar 

  25. H.S. Matis et al., IEEE Trans. Nucl. Sci. 50, 1020 (2003)

    Article  ADS  Google Scholar 

  26. N.H. Xuong et al., Proc. SPIE-IS&T Elect. Imag. 5301, 242 (2004)

    Article  ADS  Google Scholar 

  27. G. Varner et al., Nucl. Instrum. Meth. Phys. Res. A, 541, 166 (2005)

    Google Scholar 

  28. G. McMullan, S. Chen, R. Henderson, A.R. Faruqi, Ultramicroscopy 109, 1126 (2009)

    Article  Google Scholar 

  29. M. Deveaux et al., Nucl. Inst. Meth. Phys. Res. A, 583, 134 (2007)

    Google Scholar 

  30. J. Bogaerts, B. Diericks, G. Meynants, D. Uwaerts, IEEE Trans. Electr. Dev. 50, 1 (2003)

    Article  Google Scholar 

  31. M. Deveaux et al., Nucl. Inst. Meth. Phys. Res. A, 552, 118 (2005)

    Google Scholar 

  32. E.G. Villani, R. Turchetta, M. Tyndel, Nucl. Phys. B 125, 184 (2003)

    Article  Google Scholar 

  33. L. Strüder et al., Astron. Astrophys. 365, L18 (2001)

    Article  ADS  Google Scholar 

  34. W. Leitenberger et al., J. Synchrotron Radiat. 15, 449 (2008)

    Article  Google Scholar 

  35. R. Hartmann et al., Nucl. Instrum. Meth. Phys. Res. A, 568, 188 (2006)

    Google Scholar 

  36. N. Meidinger et al., IEEE Trans. Nucl. Sci. 45, 2849 (1998)

    Article  ADS  Google Scholar 

  37. L. Strüder et al., Nucl. Instrum. Meth. Phys. Res. A, 614(3), 483 (2010)

    Google Scholar 

  38. S.L. Barna et al., IEEE Trans. Nucl. Sci. 44, 950 (1997)

    Article  ADS  Google Scholar 

  39. E.F. Eikenberry et al., J. Synchrotron Radiat. 5, 252 (1998)

    Article  Google Scholar 

  40. G. Rossi et al., J. Synchrotron Radiat. 6, 1096 (1999)

    Article  Google Scholar 

  41. A.G. MacPhee et al., Science 295, 1261 (2002)

    Article  ADS  Google Scholar 

  42. W. Cai et al., Appl. Phys. Lett. 83, 1671 (2003)

    Article  ADS  Google Scholar 

  43. P. Kraft et al., IEEE Trans. Nucl. Sci. 56, 758 (2009)

    Article  ADS  Google Scholar 

  44. T. Ejdru et al., J. Synchrotron Radiat. 16, 387 (2009)

    Article  Google Scholar 

  45. M. Wulff et al., Faraday Discuss. 122, 13 (2002)

    Article  ADS  Google Scholar 

  46. B. Struth et al., Langmuir 27, 2880 (2011)

    Article  Google Scholar 

  47. H. Graafsma, JINST 4, P12011 (2009)

    Article  ADS  Google Scholar 

  48. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406, 752 (2000)

    Article  ADS  Google Scholar 

  49. H. Chapman et al., Nature 470, 73–77 (2011)

    Article  ADS  Google Scholar 

  50. M.M. Seibert et al., Nature 470, 78–81 (2011)

    Article  ADS  Google Scholar 

  51. H. Graafsma, Semiconductor Radiation Detection Systems (CRC-Press, Boca Raton, 2010), ISBN: 9781439803851

    Google Scholar 

  52. A. Blue, M. French, P. Seller, V. O’Shea, Nucl. Instrum. Meth. Phys. Res. A, 607, 55–56 (2009)

    Google Scholar 

  53. M. Porro et al., in IEEE Nuclear Science Symposium Conference Record (2008), p. 1578

    Google Scholar 

  54. X. Shi et al., Nucl. Instrum. Meth. Phys. Res. A, 624, 387 (2010)

    Google Scholar 

  55. R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, IEEE Trans. Nucl. Sci. NS-54, 1824 (2007)

    Google Scholar 

  56. D. Pennicard, R. Ballabriga, X. Llopart, M. Campbell, H. Graafsma, Nucl. Instrum. Meth. Phys. Res. A, 636, 74 (2011)

    Google Scholar 

  57. International Technology Roadmap for Semiconductors (ITRS) report 2009, and 2010 update interconnection section; www.itrs.net

  58. S.I. Parker, C.J. Kenney, J. Segal, Nucl. Instrum. Meth. Phys. Res. A, 395, 329 (1997)

    Google Scholar 

  59. D. Greiffenberg, A. Fauler, A. Zwerger, M. Fiederle, JINST 6, C01058 (2011)

    Article  ADS  Google Scholar 

  60. C. Thil et al., Nucl. Instrum. Meth. Phys. Res. A, 628, 461 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziegler, A., Graafsma, H. (2014). Detectors for Electron and X-ray Scattering and Imaging Experiments. In: Ziegler, A., Graafsma, H., Zhang, X., Frenken, J. (eds) In-situ Materials Characterization. Springer Series in Materials Science, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45152-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45152-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45151-5

  • Online ISBN: 978-3-642-45152-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics