Skip to main content

Characterising Heterocyclic Rings Through Quantum Chemical Topology

  • Chapter
  • First Online:
  • 1372 Accesses

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 38))

Abstract

In this chapter, ring structures are characterised through their calculated properties within the theory of quantum chemical topology (QCT). QCT properties of the atoms within a ring can predict the properties at a special point, a so-called ring critical point (RCP). Both the RCP properties and the atomic properties according to QCT successfully distinguish between different ring structures. There are four features of a ring that are responsible for its ring atom properties: (i) the number of heteroatoms within the ring, (ii) the heteroatom’s element, (iii) the ring substituent, and (iv) the substituent site. Interestingly, the four features affect the ring’s properties independently. Therefore, a change in a heteroatom’s element will always affect the ring’s properties the same amount, irrespective of other ring features. This is called ring characteristic orthogonality. For substituent types, it is the atom of the substituent connecting the substituent to the ring that dominates the effect on the ring, rather than the entire substituent itself. Using these relationships between ring features and QCT properties opens up the possibility of improving ring structures in areas such as drug design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lameijer EW, Kok JN, Back T, Ijzerman AP (2006) J Chem Inf Model 46:553–562

    Article  CAS  Google Scholar 

  2. Ertl P (2003) J Chem Inf Comput Sci 43:374–380

    Article  CAS  Google Scholar 

  3. Holliday JD, Jelfs SP, Willett P, Gedeck P (2003) J Chem Inf Comput Sci 43:406–411

    Article  CAS  Google Scholar 

  4. Lima LMA, Barreiro EJ (2005) Curr Med Chem 12:23–49

    Article  CAS  Google Scholar 

  5. Patani GA, LaVoie EJ (1996) Chem Rev 96:3147–3176

    Article  CAS  Google Scholar 

  6. Wermuth C-G (1996) Molecular variations based on bioisosteric replacements. In: Wermuth C-G (ed) The practice of medicinal chemistry. Academic, London, pp 202–237

    Google Scholar 

  7. Olesen PH (2001) Curr Opin Drug Discov Dev 4:471–478

    Google Scholar 

  8. Devereux M, Popelier PLA, McLay IM (2009) J Chem Inf Model 49:1497–1513

    Article  CAS  Google Scholar 

  9. Graham JE, Ripley DC, Smith JT, Smith VHJ, Weaver DF (1995) J Mol Struct THEOCHEM 343:105–109

    Article  CAS  Google Scholar 

  10. Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Pest Manag Sci 58:859–867

    Article  CAS  Google Scholar 

  11. Katritzky A, Rees C (1984) Comprehensive heterocyclic chemistry, vol 5. Pergamon Press, Oxford

    Google Scholar 

  12. Lehringer A, Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H. Freeman, New York

    Google Scholar 

  13. Liu H, Du DM (2009) Adv Synth Catal 351:489–519

    Article  CAS  Google Scholar 

  14. Talley JJ, Brown DL, Carter JS, Graneto MJ, Koboldt CM, Masferrer JL, Perkins WE, Rogers RS, Shaffer AF, Zhang YY (2000) J Med Chem 43:775–777

    Article  CAS  Google Scholar 

  15. Yang CY, Meng CL, Liao CL, Wong PYK (2003) Prost Other Lipid Mediat 72:115–130

    Article  CAS  Google Scholar 

  16. Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T (2000) New Eng J Med 342:1946–1952

    Article  CAS  Google Scholar 

  17. Krygowski TM, Ejsmont K, Stepien BT, Cyranski MK, Poater J, Sola M (2004) J Org Chem 69:6634–6640

    Article  CAS  Google Scholar 

  18. Poater J, Sola M, Viglione RG, Zanasi R (2004) J Org Chem 69:7537–7542

    Article  CAS  Google Scholar 

  19. Poater J, Fradera X, Duran M, Sola M (2003) Chem Eur J 9:400–406

    Article  CAS  Google Scholar 

  20. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443

    Article  CAS  Google Scholar 

  21. Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct THEOCHEM 501:241–250

    Article  Google Scholar 

  22. Poater J, Duran M, Sola M (2004) Int J Quantum Chem 98:361–366

    Article  CAS  Google Scholar 

  23. Matta CF, Hernandez-Trujillo J (2003) J Phys Chem A 107:7496–7504

    Article  CAS  Google Scholar 

  24. Popelier PLA, Aicken FM (2003) ChemPhysChem 4:824–829

    Article  CAS  Google Scholar 

  25. Popelier PLA, Smith PJ (2006) Eur J Med Chem 41:862–873

    Article  CAS  Google Scholar 

  26. Liem SY, Popelier PLA, Leslie M (2004) Int J Quantum Chem 99:685–694

    Article  CAS  Google Scholar 

  27. Singh NK, Popelier PLA, O’Malley PJ (2006) Chem Phys Lett 426:219–221

    Article  CAS  Google Scholar 

  28. Poater J, Fradera X, Sola M, Duran M, Simon S (2003) Chem Phys Lett 369:248–255

    Article  CAS  Google Scholar 

  29. Koch U, Popelier P (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  30. Popelier PLA (1999) J Phys Chem A 103:2883–2890

    Article  CAS  Google Scholar 

  31. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  32. Biegler-Koenig FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317–328

    Article  CAS  Google Scholar 

  33. Popelier PLA (1998) Morphy98 – a program written by Popelier PLA with a contribution from Bone RGA, Manchester

    Google Scholar 

  34. Biegler-Koenig FW, Schoenbohm J (2002) J Comp Chem 23:1489–1494

    Article  Google Scholar 

  35. Murray JS, Politzer P (1998) J Mol Struct THEOCHEM 425:107–114

    Article  CAS  Google Scholar 

  36. Suresh CH, Koga N, Gadre SR (2000) Organometallics 19:3008–3015

    Article  CAS  Google Scholar 

  37. Kroemer RT, Hecht P, Liedl KR (1996) J Comput Chem 17:1296–1308

    Article  CAS  Google Scholar 

  38. Lamarche O (2003) Theoretical prediction and application of hydrogen bond and polarity/polarisability descriptors. PhD, Cardiff University

    Google Scholar 

  39. Platts JA (2000) Phys Chem Chem Phys 2:973–980

    Article  CAS  Google Scholar 

  40. Platts JA (2000) Phys Chem Chem Phys 2:3115–3120

    Article  CAS  Google Scholar 

  41. Murray JS, Politzer P (1991) J Org Chem 56:6715–6717

    Article  CAS  Google Scholar 

  42. Kosov DS, Popelier PLA (2000) J Phys Chem A 104:7339–7345

    Article  CAS  Google Scholar 

  43. Kosov DS, Popelier PLA (2000) J Chem Phys 113:3969–3974

    Article  CAS  Google Scholar 

  44. Hofinger S, Wendland M (2002) Int J Quantum Chem 86:199–217

    Article  CAS  Google Scholar 

  45. Wold S, Sjostrom M, Eriksson L (1998) Partial least squares projections to latent structures (PLS) in chemistry. In: Schleyer P (ed) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 2006–2021

    Google Scholar 

  46. Wold S, Sjostrom M, Eriksson L (2001) Chemom Intell Lab Sys 58:109–130

    Article  CAS  Google Scholar 

  47. GAUSSIAN03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., Pittsburgh

    Google Scholar 

  48. Slee T, Larouche A, Bader RFW (1988) J Phys Chem 92:6219–6227

    Article  CAS  Google Scholar 

  49. Mori I, Fonne-Pfister R, Matsunaga S, Tada S, Kimura Y, Iwasaki G, Mano J, Hatano M, Nakano T, Koizumi S, Scheidegger A, Hayakawa K, Ohta D (1995) Plant Physiol 107:719–723

    CAS  Google Scholar 

  50. Popelier PLA (1994) Chem Phys Lett 228:160–164

    Article  CAS  Google Scholar 

  51. Popelier PLA (1996) Comput Phys Commun 93:212–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. A. Popelier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Griffiths, M.Z., Popelier, P.L.A. (2014). Characterising Heterocyclic Rings Through Quantum Chemical Topology. In: De Proft, F., Geerlings, P. (eds) Structure, Bonding and Reactivity of Heterocyclic Compounds. Topics in Heterocyclic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45149-2_3

Download citation

Publish with us

Policies and ethics