Direct Reactions at Relativistic Energies: A New Insight into the Single-Particle Structure of Exotic Nuclei

  • Dolores Cortina-GilEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 879)


Direct reactions proceed in a single step, allowing to disentangle structural properties of nuclei from the reaction mechanism. The availability of radioactive beams gives rise to a renewed activity in this field enlarging the opportunities to explore the single-particle properties of exotic nuclei. Different kinds of direct reactions have been employed in different energy regimes. At high energies, the removal of one(two)-nucleon(s) (referred to as nucleon knockout in this text) from a fast exotic projectile has been extensively investigated, exploring the nuclear structure of the peripheral tail of wave functions and providing a direct insight into the single-particle properties. More than 25 years of experimental and theoretical work will be reviewed in this lecture. This exploration has recently been rejuvenated with the possibility of quasi-free scattering applied to rare isotopes. This method will be a substantial part of the program of future experimental facilities, with the results of pilot experiments now coming to light. Quasi-free scattering will complement the information gained with nucleon knockout studies, exploring deeper regions in the wave function and allowing the determination of spectral functions for both weakly and deeply bound nucleons. This lecture provides a general overview of the experimental achievements reached so far using both complementary techniques. A brief introduction to the reaction mechanisms and a simplified interpretation of the observables obtained will be presented.


Momentum Distribution Exotic Nucleus Halo Nucleus Spectroscopic Factor Secondary Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Dr. B. Pietras for careful reading of the manuscript, valuable comments and multiple English corrections.


  1. 1.
    P.G. Hansen, J.A. Tostevin, Direct reactions with exotic nuclei. Annu. Rev. Nucl. Part. Sci. 53, 219 (2003) ADSGoogle Scholar
  2. 2.
    T. Aumann, Reactions with fast radioactive beams of neutron-rich nuclei. Eur. Phys. J. A 26, 441 (2005) ADSGoogle Scholar
  3. 3.
    A. Gade, T. Glasmacher, In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Prog. Part. Nucl. Phys. 60, 161 (2008) ADSGoogle Scholar
  4. 4.
    G. Jacob, Th.A. Maris, Nuclear structure II. Rev. Mod. Phys. 45, 6 (1973) ADSGoogle Scholar
  5. 5.
    L. Lapikás, Quasi-elastic electron scattering off nuclei. Nucl. Phys. A 553, 297 (1993) ADSGoogle Scholar
  6. 6.
    V.R. Pandharipande, I. Sick, P.K.A. de Witt Hubers, Independent particle motion and correlations in fermion systems. Rev. Mod. Phys. 69, 981 (1997) ADSGoogle Scholar
  7. 7.
    G.J. Kramer, H.P. Blok, L. Lapikas, A consistent analysis of (e,ep) and (d,3He) experiments. Nucl. Phys. A 679, 267 (2001) ADSGoogle Scholar
  8. 8.
    M.S. Hussein, K. McVoy, Inclusive projectile fragmentation in the spectator model. Nucl. Phys. A 445, 124 (1985) ADSGoogle Scholar
  9. 9.
    C.A. Bertulani, K.W. McVoy, Momentum distributions in reactions with radioactive beams. Phys. Rev. C 46, 2638 (1992) ADSGoogle Scholar
  10. 10.
    J.S. Al-Khalili et al., Evaluation of an eikonal model for 11Li-nucleus elastic scattering. Nucl. Phys. A 581, 331 (1995) ADSGoogle Scholar
  11. 11.
    D.N. Poenaru, W. Greiner, in Experimental Techniques in Nuclear Physics ed. by W. de Gruyere (Chaps. 10 and 11) Google Scholar
  12. 12.
    M.G. Mayer, On closed shells in nuclei. Phys. Rev. 74, 235 (1948) ADSGoogle Scholar
  13. 13.
    O. Haxel, J.H. Jensen, H.E. Suess, On the magic numbers in nuclear structure. Phys. Rev. 75, 1766 (1949) ADSGoogle Scholar
  14. 14.
    O. Chamberlain, E. Segrè, Proton-proton collisions within lithium nuclei. Phys. Rev. 87, 81 (1952) ADSGoogle Scholar
  15. 15.
    J.B. Cladis, W.N. Hess, B.J. Moyer, Nucleon momentum distributions in deuterium and carbon inferred from proton scattering. Phys. Rev. 87, 425 (1952) ADSGoogle Scholar
  16. 16.
    T. Berggren, H. Tryén, Quasi-free scattering. Annu. Rev. Nucl. Sci. 16, 153 (1966) ADSGoogle Scholar
  17. 17.
    G. Jacob, Th.A. Maris, Nuclear structure. Rev. Mod. Phys. 38, 121 (1966) ADSGoogle Scholar
  18. 18.
    P.K.A. de Witt Huberts, Proton spectral functions and momentum distributions in nuclei from high-resolution (e,ep) experiments. J. Phys. G 16, 507 (1990) ADSGoogle Scholar
  19. 19.
    A.E.L. Dieperink, P.K.A. de Witt Huberts, On high resolution (e,ep) reactions. Annu. Rev. Nucl. Part. Sci. 40, 239 (1990) ADSGoogle Scholar
  20. 20.
    G. van de Steehoven et al., Knockout of 1p protons from 12C induced by the (e,ep) reaction. Nucl. Phys. A 480, 547 (1988) ADSGoogle Scholar
  21. 21.
    J. Mougey et al., Quasi-free (e,ep) scattering on 12C, 28Si, 40Ca and 58Ni. Nucl. Phys. A 262, 461 (1976) ADSGoogle Scholar
  22. 22.
    P.G. Hansen, Studies of single-particle structure at and beyond the drip lines. Nucl. Phys. A 682, 310 (2001) ADSGoogle Scholar
  23. 23.
    I. Tanihata et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985) ADSGoogle Scholar
  24. 24.
    I. Tanihata, Research opportunities with accelerated beams of radioactive ions. Nucl. Phys. A 693, 1 (2001) Google Scholar
  25. 25.
    T. Kobayashi et al., Projectile fragmentation of the extremely neutron-rich nuclei 11Li at 0.79 GeV/nucleon. Phys. Rev. Lett. 60, 2599 (1988) ADSGoogle Scholar
  26. 26.
    N.A. Orr et al., Momentum distributions of 9Li fragment following the breakup of 11Li. Phys. Rev. Lett. 69, 2050 (1992) ADSGoogle Scholar
  27. 27.
    A. Gade et al., One-neutron knockout in the vicinity of N=32 sub-shell closure: 9Be(57Cr, 56Cr+γ)X. Phys. Rev. C 74, 047302 (2006) ADSMathSciNetGoogle Scholar
  28. 28.
    D. Bazin et al., New direct reaction: two-proton knockout from neutron-rich nuclei. Phys. Rev. Lett. 91, 012501 (2003) ADSGoogle Scholar
  29. 29.
    K. Yoneda et al., Two-neutron knockout from neutron-deficient 34Ar, 30S, and 26Si. Phys. Rev. C 74, 021303 (2006) ADSGoogle Scholar
  30. 30.
    J. Fridmann et al., Shell structure at N=28 near the dripline: spectroscopy of 42Si, 43P, and 44S. Phys. Rev. C 74, 034313 (2006) ADSGoogle Scholar
  31. 31.
    P. Fallon et al., Two-proton knockout from 32Mg: intruder amplitudes in 30Ne and implications for the binding of 29,31F. Phys. Rev. C 81, 041302(R) (2010) ADSGoogle Scholar
  32. 32.
    D. Santiago-Gonzalez et al., Triple configuration coexistence in 44S. Phys. Rev. C 83, 061305(R) (2011) ADSGoogle Scholar
  33. 33.
    A. Gade et al., Cross-shell excitation in two-proton knockout: structure of 52Ca. Phys. Rev. C 74, 021302 (2006) ADSMathSciNetGoogle Scholar
  34. 34.
    J.L. Lecouey et al., Single-proton removal reaction study of 16B. Phys. Lett. B 672, 6 (2009) ADSGoogle Scholar
  35. 35.
    E. Sauvan et al., One-neutron removal reactions on neutron-rich psd-shell nuclei. Phys. Lett. B 491, 1 (2000) ADSGoogle Scholar
  36. 36.
    E. Sauvan et al., One-neutron removal reactions on light neutron-rich nuclei. Phys. Rev. C 69, 044603 (2004) ADSGoogle Scholar
  37. 37.
    T. Nakamura et al., Coulomb dissociation of 19C and its halo structure. Phys. Rev. Lett. 83, 1112 (1999) ADSGoogle Scholar
  38. 38.
    N. Fukuda et al., Coulomb and nuclear breakup of a halo nucleus 11Be. Phys. Rev. C 70, 054606 (2004) ADSGoogle Scholar
  39. 39.
    T. Kubo, In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan. Nucl. Methods Phys. Res. B 204, 97 (2003) ADSGoogle Scholar
  40. 40.
    T. Ohnishi et al., Identification of new isotopes 125Pd and 126Pd produced by in-flight fission of 345 MeV/nucleon 238U: first results from the RIKEN RI beam factory. J. Phys. Soc. Jpn. 77, 083201 (2008) ADSGoogle Scholar
  41. 41.
    N. Kobayashi et al., One- and two-neutron removal reactions from the most neutron-rich carbon isotopes. Phys. Rev. C 86, 054604 (2012) ADSGoogle Scholar
  42. 42.
    R. Palit et al., Exclusive measurement of breakup reactions with the one-neutron halo nucleus 11Be. Phys. Rev. C 68, 034318 (2003) ADSGoogle Scholar
  43. 43.
    U. Datta-Pramanik et al., Coulomb breakup of the neutron-rich isotopes 15C and 17C. Phys. Lett. B 551, 63 (2003) ADSGoogle Scholar
  44. 44.
    C. Nociforo et al., Coulomb breakup of 23O. Phys. Lett. B 605, 79 (2005) ADSGoogle Scholar
  45. 45.
    Th. Baumann et al., Longitudinal momentum distributions of 16,18C fragments after one-neutron removal from 17,19C. Phys. Lett. B 439, 256 (1998) ADSGoogle Scholar
  46. 46.
    D. Cortina-Gil et al., Experimental evidence for the 8B ground state configuration. Phys. Lett. B 529, 36 (2002) ADSGoogle Scholar
  47. 47.
    D. Cortina-Gil et al., Nuclear and Coulomb breakup of 8B. Nucl. Phys. A 720, 3 (2003) ADSGoogle Scholar
  48. 48.
    D. Cortina-Gil et al., Shell structure of the near-dripline nucleus 23O. Phys. Rev. Lett. 93, 062501 (2004) ADSGoogle Scholar
  49. 49.
    R. Kanungo et al., One-neutron removal measurement reveals 24O as a new doubly magic nucleus. Phys. Rev. Lett. 102, 152501 (2009) ADSGoogle Scholar
  50. 50.
    R. Kanungo et al., Structure of 33Mg sheds new light on the N=20 island of inversion. Phys. Lett. B 685, 253 (2010) ADSGoogle Scholar
  51. 51.
    C. Rodriguez-Tajes et al., One-neutron knockout from 24–28Ne isotopes. Phys. Lett. B 687, 26 (2010) ADSGoogle Scholar
  52. 52.
    C. Rodriguez-Tajes et al., One-neutron knockout from light neutron-rich nuclei at relativistic energies. Phys. Rev. C 82, 024305 (2010) ADSGoogle Scholar
  53. 53.
    C. Rodriguez-Tajes et al., Structure of 22N and the N=14 subshell. Phys. Rev. C 83, 064313 (2011) ADSGoogle Scholar
  54. 54.
    S. Schwertel et al., One-neutron knockout from 51–55Sc. Eur. Phys. J. A 48, 191 (2012) ADSGoogle Scholar
  55. 55.
    C. Nociforo et al., One-neutron removal reactions on Al isotopes around the N=20 shell closure. Phys. Rev. C 85, 044312 (2012) ADSGoogle Scholar
  56. 56.
    T. Noro et al., A study of nucleon properties in nuclei through (p,2p) reactions. Nucl. Phys. A 629, 324 (1998) ADSGoogle Scholar
  57. 57.
    M. Yosoi et al., Structure of the s-hole state in 11B studied via de 12C(p,2p)11B reaction. Phys. Lett. B 551, 255 (2003) ADSGoogle Scholar
  58. 58.
    R. Subedi et al., Probing cold dense nuclear matter. Science 320, 1476 (2008) ADSGoogle Scholar
  59. 59.
    M. Karakoc, A. Banu, C. Bertulani, L. Trache, Coulomb distortion and medium corrections in nucleon-removal reactions. Phys. Rev. C 87, 024607 (2013) ADSGoogle Scholar
  60. 60.
    K. Henken, G. Bertsch, H. Esbensen, Breakup reactions of the halo nuclei 11Be and 8B. Phys. Rev. C 54, 3043 (1996) ADSGoogle Scholar
  61. 61.
    C.A. Bertulani, P. Danielewicz, Introduction to nuclear reactions (Institute of Physics Publishing, 2004) Google Scholar
  62. 62.
  63. 63.
    G.F. Bertsch, K. Henken, H. Esbensen, Nuclear breakup of Borromean nuclei. Phys. Rev. C 57, 1366 (1998) ADSGoogle Scholar
  64. 64.
    J. Tostevin, J. Al-Khalili, Sizes of the He isotopes deduced from proton elastic scattering measurements. Nucl. Phys. A 616, 418c (1997) ADSGoogle Scholar
  65. 65.
    J. Al-Khalili, J. Tostevin, I. Thompson, Radii of halo nuclei from cross section measurements. Phys. Rev. C 54, 1843 (1996) ADSGoogle Scholar
  66. 66.
    J. Tostevin et al., Single-neutron removal reactions from 15C and 11Be: deviations from the eikonal approximation. Phys. Rev. C 66, 024607 (2002) ADSGoogle Scholar
  67. 67.
    D. Bazin et al., Mechanisms in knockout reactions. Phys. Rev. Lett. 102, 232501 (2009) ADSGoogle Scholar
  68. 68.
    T. Aumann, Private communication (2013) Google Scholar
  69. 69.
    H. Grawe, Shell Model from a Practitioner’s Point of View, in The Euroschool Lectures on Physics with Exotic Beams, vol. I (2004), pp. 33–76 Google Scholar
  70. 70.
    T. Otsuka, Shell Structure of Exotic Nuclei, in The Euroschool Lectures on Physics with Exotic Beams, vol. III (2009), pp. 1–25 Google Scholar
  71. 71.
  72. 72.
    Shell model code NuShell,
  73. 73.
  74. 74.
    R. Roth et al., Ab initio calculations of medium-mass nuclei with normal-ordered chiral NN+3N interactions. Phys. Rev. Lett. 109, 052501 (2012) ADSGoogle Scholar
  75. 75.
    G. Hagen et al., Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes. Phys. Rev. Lett. 108, 242501 (2012) ADSGoogle Scholar
  76. 76.
    H. Hergert et al., Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett. 110, 242501 (2013) ADSGoogle Scholar
  77. 77.
    Ch. Forssén et al., Systematics of 2+ states in C isotopes from the ab initio no-core shell model. J. Phys. G, Nucl. Part. Phys. 40, 055105 (2013) ADSGoogle Scholar
  78. 78.
    V. Somà et al., Ab initio Gorkov-Green’s function calculations of open-shell nuclei. Phys. Rev. C 87, 011303(R) (2013) ADSGoogle Scholar
  79. 79.
  80. 80.
  81. 81.
    W. Mittig, Spectromètres magnetiques et electriques comme detecteurs de haute resolution et comme filtres selectifs. Ecole Joliot-Curie (1994) Google Scholar
  82. 82.
    D.J. Morrisey, B. Sherrill, In-Flight Separation of Projectile Fragments. Euroschool on Exotic Beams, vol. 1 (Springer, Berlin, 2004), ISBN 3-540-22255-3 Google Scholar
  83. 83.
    H. Geissel et al., A versatile magnetic system for relativistic heavy ions. Nucl. Inst. Methods Phys. Res. B 70, 286 (1992) ADSGoogle Scholar
  84. 84.
    D.J. Morrissey et al., A new high-resolution separator for high intensity secondary beams. Nucl. Instrum. Methods Phys. Res. B 126, 316 (1997) ADSGoogle Scholar
  85. 85.
    D. Bianchi et al., SPEG: an energy loss spectrometer for GANIL. Nucl. Instr. Methods Phys. Res. A 276, 509 (1989) ADSGoogle Scholar
  86. 86.
    Th. Baumann, Longitudinal momentum distributions of 8B and 19C: signatures for one-proton and one-neutron halos. Ph.D. Dissertation, University of Giessen (1999) Google Scholar
  87. 87.
  88. 88.
  89. 89.
    J. Eberth et al., MINIBALL A Ge detector array for radioactive ion beam facilities. Prog. Part. Nucl. Phys. 46, 389 (2001) ADSGoogle Scholar
  90. 90.
    P. Maierbeck et al., Structure of 55Ti from relativistic one-neutron knockout. Phys. Lett. B 675, 22 (2009) ADSGoogle Scholar
  91. 91.
    M. Honma et al., Effective interaction for pf-shell nuclei. Phys. Rev. C 65, 061301 (2002) ADSGoogle Scholar
  92. 92.
  93. 93.
  94. 94.
    T. Nakamura et al., Observation of strong low-lying E1 strength in the two-neutron halo nucleus 11Li. Phys. Rev. Lett. 96, 252502 (2006) ADSGoogle Scholar
  95. 95.
    H. Simon et al., Systematic investigation of the drip-line nuclei 11Li and 14Be and their unbound subsystems 10Li and 13Be. Nucl. Phys. A 791, 267 (2007) ADSGoogle Scholar
  96. 96.
    M. Zinser et al., Invariant-mass spectroscopy of 10Li and 11Li. Nucl. Phys. A 619, 151 (1997) ADSGoogle Scholar
  97. 97.
    M.S. Wallace et al., The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods Phys. Res. A 583, 302 (2007) ADSGoogle Scholar
  98. 98.
    C. Rodriguez, Ph.D. Thesis Universidad de Santiago de Compostela,
  99. 99.
    B. Jonson, Light dripline nuclei. Phys. Rep. 289, 1 (2004) ADSGoogle Scholar
  100. 100.
    J. Al-Kahalili, An introduction to Halo Nuclei, in The Euroschool Lectures on Physics with Exotic Beams, vol. I (2004), pp. 77–112 Google Scholar
  101. 101.
    K. Riisager, Nuclear Halos and experiment to probe them, in The Euroschool Lectures on Physics with Exotic Beams, vol. II (2006), pp. 1–36 Google Scholar
  102. 102.
    D.J. Millener et al., Strong E1 transitions in 9Be, 11Be, and 13C. Phys. Rev. C 28, 497 (1983) ADSGoogle Scholar
  103. 103.
    J.H. Kelley et al., Parallel momentum distributions as a probe of halo wave functions. Phys. Rev. Lett. 74, 30 (1995) ADSGoogle Scholar
  104. 104.
    F.M. Nunes, I.J. Thompson, R.C. Johnson, Core excitation in one neutron halo systems. Nucl. Phys. A 596, 171 (1996) ADSGoogle Scholar
  105. 105.
    T. Suzuki, T. Otsuka, A. Muta, Magnetic moment of 11Be. Phys. Lett. B 364, 69 (1995) ADSGoogle Scholar
  106. 106.
    D.L. Auton, Direct reactions on 10Be. Nucl. Phys. A 157, 305 (1970) ADSGoogle Scholar
  107. 107.
    B. Zwieglinski, W. Benenson, R.G.H. Robertson, Study of the 10Be(d,p)11Be reaction at 25 MeV. Nucl. Phys. A 315, 124 (1979) ADSGoogle Scholar
  108. 108.
    N.K. Timofeyuk, R.C. Johnson, Deuteron stripping and pick-up on halo nuclei. Phys. Rev. C 59, 15 (1999) Google Scholar
  109. 109.
    R. Anne et al., Exclusive and restricted-inclusive reactions involving the 11Be one-neutron halo. Nucl. Phys. A 575, 125 (1994) ADSGoogle Scholar
  110. 110.
    T. Nakamura et al., Exclusive and restricted-inclusive reactions involving the 11Be one-neutron halo. Phys. Lett. B 331, 296 (1994) ADSGoogle Scholar
  111. 111.
    T. Aumann et al., One-neutron knockout from individual single-particle states of 11Be. Phys. Rev. Lett. 84, 35. 45 (2000) ADSGoogle Scholar
  112. 112.
    E.K. Warburton, B.A. Brown, Effective interactions for the 0p1s0d nuclear shell-model space. Phys. Rev. C 46, 923 (1992) ADSGoogle Scholar
  113. 113.
    W. Schwab et al., Obsevation of a proton-halo in 8B. Z. Phys. A 350, 283 (1995) ADSGoogle Scholar
  114. 114.
    M.H. Smedberg et al., New results on the halo structure of 8B. Phys. Lett. B 452, 1 (1999) ADSGoogle Scholar
  115. 115.
    D. Cortina-Gil et al., One-nucleon removal cross-sections for 17,19C and 8,10B. Eur. Phys. J. A 10, 49 (2001) ADSGoogle Scholar
  116. 116.
    J.N. Bahcall et al., How uncertain are solar neutrino predictions? Phys. Lett. B 433, 1 (1998) ADSGoogle Scholar
  117. 117.
    Q.R. Ahmad et al., Measurement of the rate of ν e+dp+p+e− interactions produced by 8B solar neutrinos at the sudbury neutrino observatory. Phys. Rev. Lett. 87, 071301 (2001) ADSGoogle Scholar
  118. 118.
    M. Goeppert Mayer, The Shell Model. Nobel Lecture (1963) Google Scholar
  119. 119.
    J.H. Jensen, Glimpses at the History of the Nuclear Structure Theory. Nobel Lecture (1963) Google Scholar
  120. 120.
    R. Kanungo, A new view of nuclear shells. Phys. Scr. T 152, 014002 (2013) ADSGoogle Scholar
  121. 121.
    I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013) ADSGoogle Scholar
  122. 122.
    T. Otsuka et al., Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction. Phys. Rev. Lett. 87, 082502 (2001) ADSGoogle Scholar
  123. 123.
    T. Otsuka et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005) ADSGoogle Scholar
  124. 124.
    T. Otsuka et al., Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 232501 (2010) ADSGoogle Scholar
  125. 125.
    T. Otsuka, Exotic nuclei and nuclear forces. Phys. Scr. T 152, 014007 (2013) ADSGoogle Scholar
  126. 126.
    S.C. Pieper, R.B. Wiringa, J. Carlson, Quantum Monte Carlo calculations of excited states in A=6–8 nuclei. Phys. Rev. C 70, 054325 (2004) ADSGoogle Scholar
  127. 127.
    J. Holt et al., Three-body forces and shell structure in calcium isotopes. J. Phys. G, Nucl. Part. Phys. 39, 085111 (2012) ADSMathSciNetGoogle Scholar
  128. 128.
    H. Simon et al., Direct experimental evidence for strong admixture of different parity states in 11Li. Phys. Rev. Lett. 83, 496 (1999) ADSGoogle Scholar
  129. 129.
    I. Tanihata et al., Measurement of two-halo neutron transfer reaction p(11Li,9Li)t at 3 A MeV. Phys. Rev. Lett. 100, 192502 (2008) ADSGoogle Scholar
  130. 130.
    S. Fortier et al., Core excitation in 11Begs via the p(11Be,10Be)d reaction. Phys. Lett. B 461, 22 (1999) ADSGoogle Scholar
  131. 131.
    W. Geithner et al., Measurement of the Magnetic Moment of the One-Neutron Halo Nucleus 11Be. Phys. Rev. Let. 83, 3792 (1990) ADSGoogle Scholar
  132. 132.
    J.R. Terry et al., Direct evidence for the onset of intruder configurations in neutron-rich Ne isotopes. Phys. Lett. B 640, 86 (2006) ADSGoogle Scholar
  133. 133.
    J.R. Terry et al., Single-neutron knockout from intermediate energy beams of 30,32Mg: mapping the transition into the island of inversion. Phys. Rev. C 77, 014316 (2008) ADSGoogle Scholar
  134. 134.
    C.R. Hofman et al., Evidence for a doubly magic 24O. Phys. Lett. B 672, 17 (2009) ADSGoogle Scholar
  135. 135.
    K. Tshoo et al., The N=16 spherical shell closure in 24O.
  136. 136.
    W.F. Mueller et al., Nucl. Instrum. Methods Phys. Res. A 466, 492 (2001) ADSGoogle Scholar
  137. 137.
    A. Obertelli et al., N=16 subshell closure from stability to the neutron drip line. Phys. Rev. C 71, 024304 (2005) ADSGoogle Scholar
  138. 138.
    J. Tostevin, Core excitation in halo nucleus break-up. J. Phys. G 25, 735 (1999) ADSGoogle Scholar
  139. 139.
    M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Shell model description of neutron-rich pf-shell nuclei with a new effective interaction GXPF1. Eur. Phys. J. A 25, 499 (2005) Google Scholar
  140. 140.
    J. Tostevin, G. Podolyak, B.A. Brown, P.G. Hansen, Correlated two-nucleon stripping reactions. Phys. Rev. C 70, 064602 (2004) ADSGoogle Scholar
  141. 141.
    J.A. Tostevin, B.A. Brown, Diffraction dissociation contributions to two-nucleon knockout reactions and the suppression of shell-model strength. Phys. Rev. C 74, 064604 (2006) ADSGoogle Scholar
  142. 142.
    E.C. Simpson et al., Two-nucleon knockout spectroscopy at the limits of nuclear stability. Phys. Rev. Lett. 102, 132502 (2009) ADSGoogle Scholar
  143. 143.
    K. Wimmer et al., Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions. Phys. Rev. C 85, 051603(R) (2012) ADSGoogle Scholar
  144. 144.
    E.C. Simpson, J.A. Tostevin, One-and two-neutron removal from the neutron-rich carbon isotopes. Phys. Rev. C 79, 024616 (2009) ADSGoogle Scholar
  145. 145.
  146. 146.
    A. Gade et al., Reduced occupancy of the deeply bound 0d5=2 neutron state in 32Ar. Phys. Rev. Lett. 93, 042501 (2004) ADSGoogle Scholar
  147. 147.
    A. Gade et al., Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 044306 (2008) ADSGoogle Scholar
  148. 148.
    W.H. Dickhoff, C. Barbieri, Self-consistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377 (2004) ADSGoogle Scholar
  149. 149.
    T. Kobayashi et al., (p,2p) reactions on 9–16C at 250 MeV/A. Nucl. Phys. A 805, 431 (2008) ADSGoogle Scholar
  150. 150.
    N.S. Chant, P.G. Roos, Distorted-wave impulse-approximation calculations for quasifree cluster knockout reactions. Phys. Rev. C 15, 57 (1977) ADSGoogle Scholar
  151. 151.
    N.S. Chant, P.G. Roos, Spin orbit effects in quasifree knockout reactions. Phys. Rev. C 27, 1060 (1983) ADSGoogle Scholar
  152. 152.
    T. Aumann, C.A. Bertulani, J. Ryckebusch, Quasi-free (p,2p) and (p,pn) reactions with unstable nuclei, to be published. arXiv:1311.6734v1 [nucl-theo]
  153. 153.
    N. Austern et al., Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions. Phys. Rep. 154, 125 (1987) ADSGoogle Scholar
  154. 154.
    F. Nunes, Continuum-discretised coupled channels methods,
  155. 155.
    A. Moro, F. Nunes, Transfer to the continuum and breakup reactions. Nucl. Phys. A 767, 138 (2006) ADSGoogle Scholar
  156. 156.
    E. Alt et al., Reduction of the three-particle collision problem to multi-channel two-particle Lippmann-Schwinger equations. Nucl. Phys. B 2, 167 (1967) ADSGoogle Scholar
  157. 157.
    R. Crespo et al., Spectroscopy of unbound states under quasifree scattering conditions: one-neutron knockout reaction of 14Be. Phys. Rev. C 79, 014609 (2009) ADSGoogle Scholar
  158. 158.
    H. Geissel et al., The super-FRS project at GSI. Nucl. Instrum. Methods Phys. Res. B 204, 71 (2003) ADSGoogle Scholar
  159. 159.
    J.T. Taylor, Proton induced quasi-free scattering with inverse kinematics. Ph.D. Thesis, University of Liverpool (2011) Google Scholar
  160. 160.
    V. Panin, Fully exclusive measurements of quasi-free single-nucleon knockout reactions in inverse kinematics. Ph.D. Thesis Technical, University of Darmstadt (2012) Google Scholar
  161. 161.
  162. 162.
    T. Blaich et al., A large area detector for high-energy neutrons. Nucl. Instr. Methods Phys. Res. A 314, 132 (1992) ADSGoogle Scholar
  163. 163.
    Ch. Caesar et al., Beyond the neutron drip line: the unbound oxygen isotopes 25O and 26O. Phys. Rev. C 88, 034313 (2013) ADSGoogle Scholar
  164. 164.
    O. Tengblad et al., LaBr3(Ce):LaCl3(Ce) phoswich with pulse shape analysis for high energy gamma-ray and proton identification. Nucl. Instrum. Methods Phys. Res. A 704, 19 (2013) ADSGoogle Scholar
  165. 165.
    A. Obertelli, Magic numbers off stability, ERC Starting Grant (2010–2015) 258567 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Universidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations