Skip to main content

Direct Reactions at Relativistic Energies: A New Insight into the Single-Particle Structure of Exotic Nuclei

  • Chapter
The Euroschool on Exotic Beams, Vol. IV

Part of the book series: Lecture Notes in Physics ((LNP,volume 879))

  • 1127 Accesses

Abstract

Direct reactions proceed in a single step, allowing to disentangle structural properties of nuclei from the reaction mechanism. The availability of radioactive beams gives rise to a renewed activity in this field enlarging the opportunities to explore the single-particle properties of exotic nuclei. Different kinds of direct reactions have been employed in different energy regimes. At high energies, the removal of one(two)-nucleon(s) (referred to as nucleon knockout in this text) from a fast exotic projectile has been extensively investigated, exploring the nuclear structure of the peripheral tail of wave functions and providing a direct insight into the single-particle properties. More than 25 years of experimental and theoretical work will be reviewed in this lecture. This exploration has recently been rejuvenated with the possibility of quasi-free scattering applied to rare isotopes. This method will be a substantial part of the program of future experimental facilities, with the results of pilot experiments now coming to light. Quasi-free scattering will complement the information gained with nucleon knockout studies, exploring deeper regions in the wave function and allowing the determination of spectral functions for both weakly and deeply bound nucleons. This lecture provides a general overview of the experimental achievements reached so far using both complementary techniques. A brief introduction to the reaction mechanisms and a simplified interpretation of the observables obtained will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Related to the spectroscopic factors.

  2. 2.

    Reaction performed in inverse kinematics.

  3. 3.

    Again illustrated by a reaction in inverse kinematics.

  4. 4.

    The two protons are emitted back-to-back (Δϕ≈180) and with an average polar opening angle θ≈90.

  5. 5.

    In some cases the fragment is also detected providing redundant information.

  6. 6.

    Limit of existence as a bound nuclear state.

  7. 7.

    National superconducting cyclotron laboratory.

  8. 8.

    Grand accélérateur national d’ions lourds.

  9. 9.

    Nishina center for accelerator-based science.

  10. 10.

    Radioactive ion beam factory.

  11. 11.

    Separator and zero degree spectrometer.

  12. 12.

    Helmholtzzentrum für Schwerionenforschung.

  13. 13.

    Research center for nuclear physics.

  14. 14.

    The momentum distribution themselves have a small dependence on the binding energy of the removed nucleon, but depend on the nucleon’s orbital angular momentum, which enables identification of shell occupancy.

  15. 15.

    No recoil limit.

  16. 16.

    Facility for antiproton and ion research.

  17. 17.

    Facility for rare isotope beams.

  18. 18.

    The FWHM of the momentum distribution due to knockout is around 50 MeV/c for an s (l=0) neutron, and around 300 MeV/c for a d (l=2) neutron.

  19. 19.

    Option adopted for the backward angles of CALIFA.

  20. 20.

    HIgh resolution array.

  21. 21.

    Segmented germanium array.

  22. 22.

    Definition introduced in Eq. (5.7).

  23. 23.

    Difference between the Fermi level for neutrons and protons in a given nucleus.

  24. 24.

    Noted S p in Ref. [149].

  25. 25.

    S393 experiment performed in August 2010, Spokesperson T. Aumann.

  26. 26.

    The maximum rigidity provided by the Super-FRS will be 20 Tm.

  27. 27.

    In a phoswich detectors the energy of the particles is determined from two consecutive energy losses in consecutive detectors.

  28. 28.

    Project funded by the European Research Council for the period 2010–2015.

References

  1. P.G. Hansen, J.A. Tostevin, Direct reactions with exotic nuclei. Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)

    ADS  Google Scholar 

  2. T. Aumann, Reactions with fast radioactive beams of neutron-rich nuclei. Eur. Phys. J. A 26, 441 (2005)

    ADS  Google Scholar 

  3. A. Gade, T. Glasmacher, In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Prog. Part. Nucl. Phys. 60, 161 (2008)

    ADS  Google Scholar 

  4. G. Jacob, Th.A. Maris, Nuclear structure II. Rev. Mod. Phys. 45, 6 (1973)

    ADS  Google Scholar 

  5. L. Lapikás, Quasi-elastic electron scattering off nuclei. Nucl. Phys. A 553, 297 (1993)

    ADS  Google Scholar 

  6. V.R. Pandharipande, I. Sick, P.K.A. de Witt Hubers, Independent particle motion and correlations in fermion systems. Rev. Mod. Phys. 69, 981 (1997)

    ADS  Google Scholar 

  7. G.J. Kramer, H.P. Blok, L. Lapikas, A consistent analysis of (e,ep) and (d,3He) experiments. Nucl. Phys. A 679, 267 (2001)

    ADS  Google Scholar 

  8. M.S. Hussein, K. McVoy, Inclusive projectile fragmentation in the spectator model. Nucl. Phys. A 445, 124 (1985)

    ADS  Google Scholar 

  9. C.A. Bertulani, K.W. McVoy, Momentum distributions in reactions with radioactive beams. Phys. Rev. C 46, 2638 (1992)

    ADS  Google Scholar 

  10. J.S. Al-Khalili et al., Evaluation of an eikonal model for 11Li-nucleus elastic scattering. Nucl. Phys. A 581, 331 (1995)

    ADS  Google Scholar 

  11. D.N. Poenaru, W. Greiner, in Experimental Techniques in Nuclear Physics ed. by W. de Gruyere (Chaps. 10 and 11)

    Google Scholar 

  12. M.G. Mayer, On closed shells in nuclei. Phys. Rev. 74, 235 (1948)

    ADS  Google Scholar 

  13. O. Haxel, J.H. Jensen, H.E. Suess, On the magic numbers in nuclear structure. Phys. Rev. 75, 1766 (1949)

    ADS  Google Scholar 

  14. O. Chamberlain, E. Segrè, Proton-proton collisions within lithium nuclei. Phys. Rev. 87, 81 (1952)

    ADS  Google Scholar 

  15. J.B. Cladis, W.N. Hess, B.J. Moyer, Nucleon momentum distributions in deuterium and carbon inferred from proton scattering. Phys. Rev. 87, 425 (1952)

    ADS  Google Scholar 

  16. T. Berggren, H. Tryén, Quasi-free scattering. Annu. Rev. Nucl. Sci. 16, 153 (1966)

    ADS  Google Scholar 

  17. G. Jacob, Th.A. Maris, Nuclear structure. Rev. Mod. Phys. 38, 121 (1966)

    ADS  Google Scholar 

  18. P.K.A. de Witt Huberts, Proton spectral functions and momentum distributions in nuclei from high-resolution (e,ep) experiments. J. Phys. G 16, 507 (1990)

    ADS  Google Scholar 

  19. A.E.L. Dieperink, P.K.A. de Witt Huberts, On high resolution (e,ep) reactions. Annu. Rev. Nucl. Part. Sci. 40, 239 (1990)

    ADS  Google Scholar 

  20. G. van de Steehoven et al., Knockout of 1p protons from 12C induced by the (e,ep) reaction. Nucl. Phys. A 480, 547 (1988)

    ADS  Google Scholar 

  21. J. Mougey et al., Quasi-free (e,ep) scattering on 12C, 28Si, 40Ca and 58Ni. Nucl. Phys. A 262, 461 (1976)

    ADS  Google Scholar 

  22. P.G. Hansen, Studies of single-particle structure at and beyond the drip lines. Nucl. Phys. A 682, 310 (2001)

    ADS  Google Scholar 

  23. I. Tanihata et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985)

    ADS  Google Scholar 

  24. I. Tanihata, Research opportunities with accelerated beams of radioactive ions. Nucl. Phys. A 693, 1 (2001)

    Google Scholar 

  25. T. Kobayashi et al., Projectile fragmentation of the extremely neutron-rich nuclei 11Li at 0.79 GeV/nucleon. Phys. Rev. Lett. 60, 2599 (1988)

    ADS  Google Scholar 

  26. N.A. Orr et al., Momentum distributions of 9Li fragment following the breakup of 11Li. Phys. Rev. Lett. 69, 2050 (1992)

    ADS  Google Scholar 

  27. A. Gade et al., One-neutron knockout in the vicinity of N=32 sub-shell closure: 9Be(57Cr, 56Cr+γ)X. Phys. Rev. C 74, 047302 (2006)

    ADS  MathSciNet  Google Scholar 

  28. D. Bazin et al., New direct reaction: two-proton knockout from neutron-rich nuclei. Phys. Rev. Lett. 91, 012501 (2003)

    ADS  Google Scholar 

  29. K. Yoneda et al., Two-neutron knockout from neutron-deficient 34Ar, 30S, and 26Si. Phys. Rev. C 74, 021303 (2006)

    ADS  Google Scholar 

  30. J. Fridmann et al., Shell structure at N=28 near the dripline: spectroscopy of 42Si, 43P, and 44S. Phys. Rev. C 74, 034313 (2006)

    ADS  Google Scholar 

  31. P. Fallon et al., Two-proton knockout from 32Mg: intruder amplitudes in 30Ne and implications for the binding of 29,31F. Phys. Rev. C 81, 041302(R) (2010)

    ADS  Google Scholar 

  32. D. Santiago-Gonzalez et al., Triple configuration coexistence in 44S. Phys. Rev. C 83, 061305(R) (2011)

    ADS  Google Scholar 

  33. A. Gade et al., Cross-shell excitation in two-proton knockout: structure of 52Ca. Phys. Rev. C 74, 021302 (2006)

    ADS  MathSciNet  Google Scholar 

  34. J.L. Lecouey et al., Single-proton removal reaction study of 16B. Phys. Lett. B 672, 6 (2009)

    ADS  Google Scholar 

  35. E. Sauvan et al., One-neutron removal reactions on neutron-rich psd-shell nuclei. Phys. Lett. B 491, 1 (2000)

    ADS  Google Scholar 

  36. E. Sauvan et al., One-neutron removal reactions on light neutron-rich nuclei. Phys. Rev. C 69, 044603 (2004)

    ADS  Google Scholar 

  37. T. Nakamura et al., Coulomb dissociation of 19C and its halo structure. Phys. Rev. Lett. 83, 1112 (1999)

    ADS  Google Scholar 

  38. N. Fukuda et al., Coulomb and nuclear breakup of a halo nucleus 11Be. Phys. Rev. C 70, 054606 (2004)

    ADS  Google Scholar 

  39. T. Kubo, In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan. Nucl. Methods Phys. Res. B 204, 97 (2003)

    ADS  Google Scholar 

  40. T. Ohnishi et al., Identification of new isotopes 125Pd and 126Pd produced by in-flight fission of 345 MeV/nucleon 238U: first results from the RIKEN RI beam factory. J. Phys. Soc. Jpn. 77, 083201 (2008)

    ADS  Google Scholar 

  41. N. Kobayashi et al., One- and two-neutron removal reactions from the most neutron-rich carbon isotopes. Phys. Rev. C 86, 054604 (2012)

    ADS  Google Scholar 

  42. R. Palit et al., Exclusive measurement of breakup reactions with the one-neutron halo nucleus 11Be. Phys. Rev. C 68, 034318 (2003)

    ADS  Google Scholar 

  43. U. Datta-Pramanik et al., Coulomb breakup of the neutron-rich isotopes 15C and 17C. Phys. Lett. B 551, 63 (2003)

    ADS  Google Scholar 

  44. C. Nociforo et al., Coulomb breakup of 23O. Phys. Lett. B 605, 79 (2005)

    ADS  Google Scholar 

  45. Th. Baumann et al., Longitudinal momentum distributions of 16,18C fragments after one-neutron removal from 17,19C. Phys. Lett. B 439, 256 (1998)

    ADS  Google Scholar 

  46. D. Cortina-Gil et al., Experimental evidence for the 8B ground state configuration. Phys. Lett. B 529, 36 (2002)

    ADS  Google Scholar 

  47. D. Cortina-Gil et al., Nuclear and Coulomb breakup of 8B. Nucl. Phys. A 720, 3 (2003)

    ADS  Google Scholar 

  48. D. Cortina-Gil et al., Shell structure of the near-dripline nucleus 23O. Phys. Rev. Lett. 93, 062501 (2004)

    ADS  Google Scholar 

  49. R. Kanungo et al., One-neutron removal measurement reveals 24O as a new doubly magic nucleus. Phys. Rev. Lett. 102, 152501 (2009)

    ADS  Google Scholar 

  50. R. Kanungo et al., Structure of 33Mg sheds new light on the N=20 island of inversion. Phys. Lett. B 685, 253 (2010)

    ADS  Google Scholar 

  51. C. Rodriguez-Tajes et al., One-neutron knockout from 24–28Ne isotopes. Phys. Lett. B 687, 26 (2010)

    ADS  Google Scholar 

  52. C. Rodriguez-Tajes et al., One-neutron knockout from light neutron-rich nuclei at relativistic energies. Phys. Rev. C 82, 024305 (2010)

    ADS  Google Scholar 

  53. C. Rodriguez-Tajes et al., Structure of 22N and the N=14 subshell. Phys. Rev. C 83, 064313 (2011)

    ADS  Google Scholar 

  54. S. Schwertel et al., One-neutron knockout from 51–55Sc. Eur. Phys. J. A 48, 191 (2012)

    ADS  Google Scholar 

  55. C. Nociforo et al., One-neutron removal reactions on Al isotopes around the N=20 shell closure. Phys. Rev. C 85, 044312 (2012)

    ADS  Google Scholar 

  56. T. Noro et al., A study of nucleon properties in nuclei through (p,2p) reactions. Nucl. Phys. A 629, 324 (1998)

    ADS  Google Scholar 

  57. M. Yosoi et al., Structure of the s-hole state in 11B studied via de 12C(p,2p)11B reaction. Phys. Lett. B 551, 255 (2003)

    ADS  Google Scholar 

  58. R. Subedi et al., Probing cold dense nuclear matter. Science 320, 1476 (2008)

    ADS  Google Scholar 

  59. M. Karakoc, A. Banu, C. Bertulani, L. Trache, Coulomb distortion and medium corrections in nucleon-removal reactions. Phys. Rev. C 87, 024607 (2013)

    ADS  Google Scholar 

  60. K. Henken, G. Bertsch, H. Esbensen, Breakup reactions of the halo nuclei 11Be and 8B. Phys. Rev. C 54, 3043 (1996)

    ADS  Google Scholar 

  61. C.A. Bertulani, P. Danielewicz, Introduction to nuclear reactions (Institute of Physics Publishing, 2004)

    Google Scholar 

  62. http://www.nuclear.theory.net/NPE/Talentmaterial/index2.htlm

  63. G.F. Bertsch, K. Henken, H. Esbensen, Nuclear breakup of Borromean nuclei. Phys. Rev. C 57, 1366 (1998)

    ADS  Google Scholar 

  64. J. Tostevin, J. Al-Khalili, Sizes of the He isotopes deduced from proton elastic scattering measurements. Nucl. Phys. A 616, 418c (1997)

    ADS  Google Scholar 

  65. J. Al-Khalili, J. Tostevin, I. Thompson, Radii of halo nuclei from cross section measurements. Phys. Rev. C 54, 1843 (1996)

    ADS  Google Scholar 

  66. J. Tostevin et al., Single-neutron removal reactions from 15C and 11Be: deviations from the eikonal approximation. Phys. Rev. C 66, 024607 (2002)

    ADS  Google Scholar 

  67. D. Bazin et al., Mechanisms in knockout reactions. Phys. Rev. Lett. 102, 232501 (2009)

    ADS  Google Scholar 

  68. T. Aumann, Private communication (2013)

    Google Scholar 

  69. H. Grawe, Shell Model from a Practitioner’s Point of View, in The Euroschool Lectures on Physics with Exotic Beams, vol. I (2004), pp. 33–76

    Google Scholar 

  70. T. Otsuka, Shell Structure of Exotic Nuclei, in The Euroschool Lectures on Physics with Exotic Beams, vol. III (2009), pp. 1–25

    Google Scholar 

  71. Shell model code ANTOINE, http://sbgat194.in2p3.fr/~theory/antoine/intro.html

  72. Shell model code NuShell, http://www.garsington.eclipse.co.uk

  73. Shell model OXBASH, http://arxiv.org/abs/nucl-th/9406020

  74. R. Roth et al., Ab initio calculations of medium-mass nuclei with normal-ordered chiral NN+3N interactions. Phys. Rev. Lett. 109, 052501 (2012)

    ADS  Google Scholar 

  75. G. Hagen et al., Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes. Phys. Rev. Lett. 108, 242501 (2012)

    ADS  Google Scholar 

  76. H. Hergert et al., Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett. 110, 242501 (2013)

    ADS  Google Scholar 

  77. Ch. Forssén et al., Systematics of 2+ states in C isotopes from the ab initio no-core shell model. J. Phys. G, Nucl. Part. Phys. 40, 055105 (2013)

    ADS  Google Scholar 

  78. V. Somà et al., Ab initio Gorkov-Green’s function calculations of open-shell nuclei. Phys. Rev. C 87, 011303(R) (2013)

    ADS  Google Scholar 

  79. http://www.fair-center.eu/

  80. http://www.frib.msu.edu/

  81. W. Mittig, Spectromètres magnetiques et electriques comme detecteurs de haute resolution et comme filtres selectifs. Ecole Joliot-Curie (1994)

    Google Scholar 

  82. D.J. Morrisey, B. Sherrill, In-Flight Separation of Projectile Fragments. Euroschool on Exotic Beams, vol. 1 (Springer, Berlin, 2004), ISBN 3-540-22255-3

    Google Scholar 

  83. H. Geissel et al., A versatile magnetic system for relativistic heavy ions. Nucl. Inst. Methods Phys. Res. B 70, 286 (1992)

    ADS  Google Scholar 

  84. D.J. Morrissey et al., A new high-resolution separator for high intensity secondary beams. Nucl. Instrum. Methods Phys. Res. B 126, 316 (1997)

    ADS  Google Scholar 

  85. D. Bianchi et al., SPEG: an energy loss spectrometer for GANIL. Nucl. Instr. Methods Phys. Res. A 276, 509 (1989)

    ADS  Google Scholar 

  86. Th. Baumann, Longitudinal momentum distributions of 8B and 19C: signatures for one-proton and one-neutron halos. Ph.D. Dissertation, University of Giessen (1999)

    Google Scholar 

  87. http://lise.nscl.msu.edu/documentation.html

  88. http://web-docs.gsi.de/~weick/mocadi/

  89. J. Eberth et al., MINIBALL A Ge detector array for radioactive ion beam facilities. Prog. Part. Nucl. Phys. 46, 389 (2001)

    ADS  Google Scholar 

  90. P. Maierbeck et al., Structure of 55Ti from relativistic one-neutron knockout. Phys. Lett. B 675, 22 (2009)

    ADS  Google Scholar 

  91. M. Honma et al., Effective interaction for pf-shell nuclei. Phys. Rev. C 65, 061301 (2002)

    ADS  Google Scholar 

  92. Technical design report of the CALIFA Barrel Detector, http://www.fair-center.eu/en/for-users/publications/experiment-collaboration-publications.html

  93. https://www.gsi.de/en/work/research/nustarenna/kernreaktionen/activities/r3b.htm

  94. T. Nakamura et al., Observation of strong low-lying E1 strength in the two-neutron halo nucleus 11Li. Phys. Rev. Lett. 96, 252502 (2006)

    ADS  Google Scholar 

  95. H. Simon et al., Systematic investigation of the drip-line nuclei 11Li and 14Be and their unbound subsystems 10Li and 13Be. Nucl. Phys. A 791, 267 (2007)

    ADS  Google Scholar 

  96. M. Zinser et al., Invariant-mass spectroscopy of 10Li and 11Li. Nucl. Phys. A 619, 151 (1997)

    ADS  Google Scholar 

  97. M.S. Wallace et al., The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods Phys. Res. A 583, 302 (2007)

    ADS  Google Scholar 

  98. C. Rodriguez, Ph.D. Thesis Universidad de Santiago de Compostela, http://www.usc.es/genp

  99. B. Jonson, Light dripline nuclei. Phys. Rep. 289, 1 (2004)

    ADS  Google Scholar 

  100. J. Al-Kahalili, An introduction to Halo Nuclei, in The Euroschool Lectures on Physics with Exotic Beams, vol. I (2004), pp. 77–112

    Google Scholar 

  101. K. Riisager, Nuclear Halos and experiment to probe them, in The Euroschool Lectures on Physics with Exotic Beams, vol. II (2006), pp. 1–36

    Google Scholar 

  102. D.J. Millener et al., Strong E1 transitions in 9Be, 11Be, and 13C. Phys. Rev. C 28, 497 (1983)

    ADS  Google Scholar 

  103. J.H. Kelley et al., Parallel momentum distributions as a probe of halo wave functions. Phys. Rev. Lett. 74, 30 (1995)

    ADS  Google Scholar 

  104. F.M. Nunes, I.J. Thompson, R.C. Johnson, Core excitation in one neutron halo systems. Nucl. Phys. A 596, 171 (1996)

    ADS  Google Scholar 

  105. T. Suzuki, T. Otsuka, A. Muta, Magnetic moment of 11Be. Phys. Lett. B 364, 69 (1995)

    ADS  Google Scholar 

  106. D.L. Auton, Direct reactions on 10Be. Nucl. Phys. A 157, 305 (1970)

    ADS  Google Scholar 

  107. B. Zwieglinski, W. Benenson, R.G.H. Robertson, Study of the 10Be(d,p)11Be reaction at 25 MeV. Nucl. Phys. A 315, 124 (1979)

    ADS  Google Scholar 

  108. N.K. Timofeyuk, R.C. Johnson, Deuteron stripping and pick-up on halo nuclei. Phys. Rev. C 59, 15 (1999)

    Google Scholar 

  109. R. Anne et al., Exclusive and restricted-inclusive reactions involving the 11Be one-neutron halo. Nucl. Phys. A 575, 125 (1994)

    ADS  Google Scholar 

  110. T. Nakamura et al., Exclusive and restricted-inclusive reactions involving the 11Be one-neutron halo. Phys. Lett. B 331, 296 (1994)

    ADS  Google Scholar 

  111. T. Aumann et al., One-neutron knockout from individual single-particle states of 11Be. Phys. Rev. Lett. 84, 35. 45 (2000)

    ADS  Google Scholar 

  112. E.K. Warburton, B.A. Brown, Effective interactions for the 0p1s0d nuclear shell-model space. Phys. Rev. C 46, 923 (1992)

    ADS  Google Scholar 

  113. W. Schwab et al., Obsevation of a proton-halo in 8B. Z. Phys. A 350, 283 (1995)

    ADS  Google Scholar 

  114. M.H. Smedberg et al., New results on the halo structure of 8B. Phys. Lett. B 452, 1 (1999)

    ADS  Google Scholar 

  115. D. Cortina-Gil et al., One-nucleon removal cross-sections for 17,19C and 8,10B. Eur. Phys. J. A 10, 49 (2001)

    ADS  Google Scholar 

  116. J.N. Bahcall et al., How uncertain are solar neutrino predictions? Phys. Lett. B 433, 1 (1998)

    ADS  Google Scholar 

  117. Q.R. Ahmad et al., Measurement of the rate of ν e +dp+p+e− interactions produced by 8B solar neutrinos at the sudbury neutrino observatory. Phys. Rev. Lett. 87, 071301 (2001)

    ADS  Google Scholar 

  118. M. Goeppert Mayer, The Shell Model. Nobel Lecture (1963)

    Google Scholar 

  119. J.H. Jensen, Glimpses at the History of the Nuclear Structure Theory. Nobel Lecture (1963)

    Google Scholar 

  120. R. Kanungo, A new view of nuclear shells. Phys. Scr. T 152, 014002 (2013)

    ADS  Google Scholar 

  121. I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013)

    ADS  Google Scholar 

  122. T. Otsuka et al., Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction. Phys. Rev. Lett. 87, 082502 (2001)

    ADS  Google Scholar 

  123. T. Otsuka et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005)

    ADS  Google Scholar 

  124. T. Otsuka et al., Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 232501 (2010)

    ADS  Google Scholar 

  125. T. Otsuka, Exotic nuclei and nuclear forces. Phys. Scr. T 152, 014007 (2013)

    ADS  Google Scholar 

  126. S.C. Pieper, R.B. Wiringa, J. Carlson, Quantum Monte Carlo calculations of excited states in A=6–8 nuclei. Phys. Rev. C 70, 054325 (2004)

    ADS  Google Scholar 

  127. J. Holt et al., Three-body forces and shell structure in calcium isotopes. J. Phys. G, Nucl. Part. Phys. 39, 085111 (2012)

    ADS  MathSciNet  Google Scholar 

  128. H. Simon et al., Direct experimental evidence for strong admixture of different parity states in 11Li. Phys. Rev. Lett. 83, 496 (1999)

    ADS  Google Scholar 

  129. I. Tanihata et al., Measurement of two-halo neutron transfer reaction p(11Li,9Li)t at 3 A MeV. Phys. Rev. Lett. 100, 192502 (2008)

    ADS  Google Scholar 

  130. S. Fortier et al., Core excitation in 11Be gs via the p(11Be,10Be)d reaction. Phys. Lett. B 461, 22 (1999)

    ADS  Google Scholar 

  131. W. Geithner et al., Measurement of the Magnetic Moment of the One-Neutron Halo Nucleus 11Be. Phys. Rev. Let. 83, 3792 (1990)

    ADS  Google Scholar 

  132. J.R. Terry et al., Direct evidence for the onset of intruder configurations in neutron-rich Ne isotopes. Phys. Lett. B 640, 86 (2006)

    ADS  Google Scholar 

  133. J.R. Terry et al., Single-neutron knockout from intermediate energy beams of 30,32Mg: mapping the transition into the island of inversion. Phys. Rev. C 77, 014316 (2008)

    ADS  Google Scholar 

  134. C.R. Hofman et al., Evidence for a doubly magic 24O. Phys. Lett. B 672, 17 (2009)

    ADS  Google Scholar 

  135. K. Tshoo et al., The N=16 spherical shell closure in 24O. http://arxiv.org/pdf/1205.5657.pdf

  136. W.F. Mueller et al., Nucl. Instrum. Methods Phys. Res. A 466, 492 (2001)

    ADS  Google Scholar 

  137. A. Obertelli et al., N=16 subshell closure from stability to the neutron drip line. Phys. Rev. C 71, 024304 (2005)

    ADS  Google Scholar 

  138. J. Tostevin, Core excitation in halo nucleus break-up. J. Phys. G 25, 735 (1999)

    ADS  Google Scholar 

  139. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Shell model description of neutron-rich pf-shell nuclei with a new effective interaction GXPF1. Eur. Phys. J. A 25, 499 (2005)

    Google Scholar 

  140. J. Tostevin, G. Podolyak, B.A. Brown, P.G. Hansen, Correlated two-nucleon stripping reactions. Phys. Rev. C 70, 064602 (2004)

    ADS  Google Scholar 

  141. J.A. Tostevin, B.A. Brown, Diffraction dissociation contributions to two-nucleon knockout reactions and the suppression of shell-model strength. Phys. Rev. C 74, 064604 (2006)

    ADS  Google Scholar 

  142. E.C. Simpson et al., Two-nucleon knockout spectroscopy at the limits of nuclear stability. Phys. Rev. Lett. 102, 132502 (2009)

    ADS  Google Scholar 

  143. K. Wimmer et al., Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions. Phys. Rev. C 85, 051603(R) (2012)

    ADS  Google Scholar 

  144. E.C. Simpson, J.A. Tostevin, One-and two-neutron removal from the neutron-rich carbon isotopes. Phys. Rev. C 79, 024616 (2009)

    ADS  Google Scholar 

  145. http://www.gsi.de/work/forschung/nustarenna/kernreaktionen/activities/elise.htm

  146. A. Gade et al., Reduced occupancy of the deeply bound 0d5=2 neutron state in 32Ar. Phys. Rev. Lett. 93, 042501 (2004)

    ADS  Google Scholar 

  147. A. Gade et al., Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 044306 (2008)

    ADS  Google Scholar 

  148. W.H. Dickhoff, C. Barbieri, Self-consistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377 (2004)

    ADS  Google Scholar 

  149. T. Kobayashi et al., (p,2p) reactions on 9–16C at 250 MeV/A. Nucl. Phys. A 805, 431 (2008)

    ADS  Google Scholar 

  150. N.S. Chant, P.G. Roos, Distorted-wave impulse-approximation calculations for quasifree cluster knockout reactions. Phys. Rev. C 15, 57 (1977)

    ADS  Google Scholar 

  151. N.S. Chant, P.G. Roos, Spin orbit effects in quasifree knockout reactions. Phys. Rev. C 27, 1060 (1983)

    ADS  Google Scholar 

  152. T. Aumann, C.A. Bertulani, J. Ryckebusch, Quasi-free (p,2p) and (p,pn) reactions with unstable nuclei, to be published. arXiv:1311.6734v1 [nucl-theo]

  153. N. Austern et al., Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions. Phys. Rep. 154, 125 (1987)

    ADS  Google Scholar 

  154. F. Nunes, Continuum-discretised coupled channels methods, http://www.scholarpedia.org/article/Continuum-Discretised-Coupled-Channels-methods

  155. A. Moro, F. Nunes, Transfer to the continuum and breakup reactions. Nucl. Phys. A 767, 138 (2006)

    ADS  Google Scholar 

  156. E. Alt et al., Reduction of the three-particle collision problem to multi-channel two-particle Lippmann-Schwinger equations. Nucl. Phys. B 2, 167 (1967)

    ADS  Google Scholar 

  157. R. Crespo et al., Spectroscopy of unbound states under quasifree scattering conditions: one-neutron knockout reaction of 14Be. Phys. Rev. C 79, 014609 (2009)

    ADS  Google Scholar 

  158. H. Geissel et al., The super-FRS project at GSI. Nucl. Instrum. Methods Phys. Res. B 204, 71 (2003)

    ADS  Google Scholar 

  159. J.T. Taylor, Proton induced quasi-free scattering with inverse kinematics. Ph.D. Thesis, University of Liverpool (2011)

    Google Scholar 

  160. V. Panin, Fully exclusive measurements of quasi-free single-nucleon knockout reactions in inverse kinematics. Ph.D. Thesis Technical, University of Darmstadt (2012)

    Google Scholar 

  161. www-aladin.gsi.de/www/kp3/aladinhome.html

  162. T. Blaich et al., A large area detector for high-energy neutrons. Nucl. Instr. Methods Phys. Res. A 314, 132 (1992)

    ADS  Google Scholar 

  163. Ch. Caesar et al., Beyond the neutron drip line: the unbound oxygen isotopes 25O and 26O. Phys. Rev. C 88, 034313 (2013)

    ADS  Google Scholar 

  164. O. Tengblad et al., LaBr3(Ce):LaCl3(Ce) phoswich with pulse shape analysis for high energy gamma-ray and proton identification. Nucl. Instrum. Methods Phys. Res. A 704, 19 (2013)

    ADS  Google Scholar 

  165. A. Obertelli, Magic numbers off stability, ERC Starting Grant (2010–2015) 258567

    Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. B. Pietras for careful reading of the manuscript, valuable comments and multiple English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores Cortina-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cortina-Gil, D. (2014). Direct Reactions at Relativistic Energies: A New Insight into the Single-Particle Structure of Exotic Nuclei. In: Scheidenberger, C., Pfützner, M. (eds) The Euroschool on Exotic Beams, Vol. IV. Lecture Notes in Physics, vol 879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45141-6_5

Download citation

Publish with us

Policies and ethics