Skip to main content

Data Mining

  • Chapter
  • First Online:
Recommendation Systems in Software Engineering

Abstract

Recommendation systems find and summarize patterns in the structure of some data or in how we visit that data. Such summarizing can be implemented by data mining algorithms. While the rest of this book focuses specifically on recommendation systems in software engineering, this chapter provides a more general tutorial introduction to data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given a mean value for x over n measurements \(\bar{x} = \frac{1} {n}\sum _{i=1}^{n}x_{i}\), then the total sum of squares is \(\mathit{SS}_{\text{tot}} =\sum _{i}{(x_{i} -\bar{ x})}^{2}\) and the sum of squares of residuals is \(\mathit{SS}_{\text{err}} =\sum _{i}{(x_{i} - f_{i})}^{2}\). From this, the amount by which x determines f is \({R}^{2} = 1 -\left (\mathit{SS}_{\text{err}}/\mathit{SS}_{\text{tot}}\right )\).

  2. 2.

    But it should be emphasized that this is more an issue in the typical toolkit’s implementation than some fatal flaw with random forests.

  3. 3.

    Note that Farnstrom et al. use n = 1 but this is a parameter that can be tuned. In the next section, we discuss incremental learners where, at least during the initial learning phase, all the data will be anomalous since this learner has never seen anything before. For learning from very few examples, n should be greater than one.

  4. 4.

    It turns out that WHERE (described above in Sect. 3.4.5) is a heuristic method for finding the first domain of PCA. But while PCA takes polynomial time, WHERE runs in linear time. For more on the relationship of WHERE to PCA, see Platt [48].

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993). DOI 10.1145/170035.170072

    Google Scholar 

  2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991). DOI 10.1023/A:1022689900470

    Google Scholar 

  3. Boley, D.: Principal direction divisive partitioning. Data Min. Knowl. Discov. 2(4), 325–344 (1998). DOI 10.1023/A:1009740529316

    Article  Google Scholar 

  4. Bradley, P.S., Fayyad, U.M., Reina, C.: Scaling clustering algorithms to large databases. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 9–15 (1998)

    Google Scholar 

  5. Brady, A., Menzies, T.: Case-based reasoning vs parametric models for software quality optimization. In: Proceedings of the International Conference on Predictor Models in Software Engineering, pp. 3:1–3:10 (2010). DOI 10.1145/1868328.1868333

    Google Scholar 

  6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall/CRC, Boca Raton, FL (1984)

    MATH  Google Scholar 

  7. Breimann, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). DOI 10.1023/A:1010933404324

    Article  Google Scholar 

  8. Catlett, J.: Inductive learning from subsets, or, Disposal ofexcess training data considered harmful. In: Proceedings of the Australian Workshop on Knowledge Acquisition forKnowledge-Based Systems, pp. 53–67 (1991)

    Google Scholar 

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41, 15:1–15:58 (2009). DOI 10.1145/1541880.1541882

    Google Scholar 

  10. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11), 1179–1185 (1974). DOI 10.1109/T-C.1974.223827

    Article  MATH  Google Scholar 

  11. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: How effective is tabu search to configure support vector regression for effort estimation? In: Proceedings of the International Conference on Predictor Models in Software Engineering, pp. 4:1–4:10 (2010). DOI 10.1145/1868328.1868335

    Google Scholar 

  12. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). DOI 10.1023/A:1022627411411

    MATH  Google Scholar 

  13. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391–407 (1990). DOI 10.1002/(SICI)1097-4571(199009)41:6⟨391::AID-ASI1⟩3.0.CO;2-9

    Article  Google Scholar 

  14. Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for software effort estimation: A comparative study. IEEE Trans. Software Eng. 38, 375–397 (2012). DOI 10.1109/TSE.2011.55

    Article  Google Scholar 

  15. Domingos, P., Pazzani, M.J.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29(2–3), 103–130 (1997). DOI 10.1023/A:1007413511361

    Article  MATH  Google Scholar 

  16. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proceedings of the International Conference on Machine Learning, pp. 194–202 (1995)

    Google Scholar 

  17. Durstenfeld, R.: Algorithm 235: Random permutation. Comm. ACM 7(7), 420 (1964). DOI 10.1145/364520.364540

    Article  Google Scholar 

  18. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  19. Farnstrom, F., Lewis, J., Elkan, C.: Scalability for clustering algorithms revisited. SIGKDD Explor. Newslett. 2(1), 51–57 (2000). DOI 10.1145/360402.360419

    Article  Google Scholar 

  20. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1022–1029 (1993)

    Google Scholar 

  21. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). DOI 10.1006/jcss.1997.1504

    Article  MATH  MathSciNet  Google Scholar 

  22. Gama, J., Pinto, C.: Discretization from data streams: Applications to histograms and data mining. In: Proceedings of the ACM SIGAPP Symposium on Applied Computing, pp. 662–667 (2006). DOI 10.1145/1141277.1141429

    Google Scholar 

  23. Garcia, S., Derrac, J., Cano, J.R., Herrera, F.: Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012). DOI 10.1109/TPAMI.2011.142

    Article  Google Scholar 

  24. Gupta, C., Grossman, R.: GenIc: A single pass generalized incremental algorithm for clustering. In: Proceedings of the SIAM International Conference on Data Mining, pp. 147–153 (2004)

    Google Scholar 

  25. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003). DOI 10.1109/TKDE.2003.1245283

    Article  Google Scholar 

  26. Hand, D.J.: Classifier technology and the illusion of progress. Stat. Sci. 21(1), 1–14 (2006). DOI 10.1214/088342306000000060

    Article  MATH  MathSciNet  Google Scholar 

  27. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inform. Theory 14(3), 515–516 (1968). DOI 10.1109/TIT.1968.1054155

    Article  Google Scholar 

  28. Hedges, L.V., Olkin, I.: Nonparametric estimators of effect size in meta-analysis. Psychol. Bull. 96(3), 573–580 (1984)

    Article  Google Scholar 

  29. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010). DOI 10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  30. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999). DOI 10.1145/331499.331504

    Article  Google Scholar 

  31. Kampenes, V.B., Dybå, T., Hannay, J.E., Sjøberg, D.I.K.: A systematic review of effect size in software engineering experiments. Inform. Software Tech. 49(11–12), 1073–1086 (2007). DOI 10.1016/j.infsof.2007.02.015

    Article  Google Scholar 

  32. Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Boston, MA (1998)

    Google Scholar 

  33. Kocaguneli, E., Menzies, T., Bener, A., Keung, J.: Exploiting the essential assumptions of analogy-based effort estimation. IEEE Trans. Software Eng. 28(2), 425–438 (2012a). DOI 10.1109/TSE.2011.27

    Article  Google Scholar 

  34. Kocaguneli, E., Menzies, T., Keung, J.: On the value of ensemble effort estimation. IEEE Trans. Software Eng. 38(6), 1403–1416 (2012b). DOI 10.1109/TSE.2011.111

    Article  Google Scholar 

  35. Kocaguneli, E., Menzies, T., Keung, J., Cok, D., Madachy, R.: Active learning and effort estimation: Finding the essential content of software effort estimation data. IEEE Trans. Software Eng. 39(8), 1040–1053 (2013). DOI 10.1109/TSE.2012.88

    Article  Google Scholar 

  36. Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

  37. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997). DOI 10.1016/S0004-3702(97)00043-X

    Article  MATH  Google Scholar 

  38. Levina, E., Bickel, P.J.: Maximum likelihood estimation of instrinsic dimension. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 777–784. MIT Press, Cambridge, MA (2005)

    Google Scholar 

  39. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional datasets with application to reference matching. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 169–178 (2000). DOI 10.1145/347090.347123

    Google Scholar 

  40. Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B., Zimmermann, T.: Local vs. global lessons for defect prediction and effort estimation. IEEE Trans. Software Eng. 39(6), 822–834 (2013). DOI 10.1109/TSE.2012.83

    Google Scholar 

  41. Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., Jiang, Y.: Implications of ceiling effects in defect predictors. In: Proceedings of the International Workshop on Predictor Models in Software Engineering (2008). DOI 10.1145/1370788.1370801

    Google Scholar 

  42. Minku, L.L., Yao, X.: DDD: A new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24(4), 619–633 (2012). DOI 10.1109/TKDE.2011.58

    Article  Google Scholar 

  43. Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models through a multiple comparisons algorithm. IEEE Trans. Software Eng. 39(4), 537–551 (2012). DOI 10.1109/TSE.2012.45

    Article  Google Scholar 

  44. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 452–461 (2006). DOI 10.1145/1134285.1134349

    Google Scholar 

  45. Pearson, K.: I. mathematical contributions to the theory of evolution—VII. on the correlation of characters not quantitatively measurable. Phil. Trans. Roy. Soc. Lond. Ser. A 195, 1–47 & 405 (1900)

    Google Scholar 

  46. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Phil. Mag. 2(11), 559–572 (1901). DOI 10.1080/14786440109462720

    Google Scholar 

  47. Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in cross-company defect prediction. IEEE Trans. Software Eng. 39(8), 1054–1068 (2013). DOI 10.1109/TSE.2013.6

    Article  Google Scholar 

  48. Platt, J.C.: FastMap, MetricMap, and Landmark MDS are all Nyström algorithms. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics, pp. 261–268 (2005)

    Google Scholar 

  49. Porter, M.F.: An algorithm for suffix stripping. Program Electron. Libr. Inform. Syst. 14(3), 130–137 (1980). DOI 10.1108/eb046814

    Article  Google Scholar 

  50. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  51. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (2003)

    Google Scholar 

  52. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Englewood Cliffs, NJ (2009)

    Google Scholar 

  53. Scott, A.J., Knott, M.: A cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3), 507–512 (1974)

    Article  MATH  Google Scholar 

  54. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the International Conference on the World Wide Web, pp. 1177–1178 (2010). DOI 10.1145/1772690.1772862

    Google Scholar 

  55. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948a)

    Article  MATH  MathSciNet  Google Scholar 

  56. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948b)

    Article  MathSciNet  Google Scholar 

  57. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco, CA (2011)

    Google Scholar 

  58. Yang, Y., Webb, G.I.: Discretization for naive-Bayes learning: Managing discretization bias and variance. Mach. Learn. 74(1), 39–74 (2009). DOI 10.1007/s10994-008-5083-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Menzies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menzies, T. (2014). Data Mining. In: Robillard, M., Maalej, W., Walker, R., Zimmermann, T. (eds) Recommendation Systems in Software Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45135-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45135-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45134-8

  • Online ISBN: 978-3-642-45135-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics