Skip to main content

Using Activity Theory and Causal Diagrams for Designing MultiAgent Systems That Assist Human Activities

  • Conference paper
Advances in Artificial Intelligence and Its Applications (MICAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8265))

Included in the following conference series:

Abstract

In this paper, we propose to use the Activity Theory and causal diagrams for modelling human activities with the aim of facilitating the specification of an agent-based assistance system through the Prometheus methodology. As a case study, we consider the elder medication activity, a recurring, complex and context-rich activity that involves several individual and collective activities which may require assistance. From the data collected in a contextual study of the elder medication, we modeled the medical consultation and refill medicine activities. Our results demonstrate that causal diagrams allow to capture the dynamics of the modelled activity, introduce the assistance of intelligent agents, extract the multiple scenarios synthesized in the activity structure and translate them into Prometheus artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhou, M., Ren, J., Qi, J., Niu, D., Li, G.: Commonkads methodology for developing power grid switching orders systems. In: Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4819, pp. 87–98. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent agents. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 174–185. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12, 317–370 (2003)

    Article  Google Scholar 

  4. Bareiss, E.R.: Protos: A unified approach to concept representation, classification, and learning (ph.d. dissertation). Technical report, Austin, TX, USA (1988)

    Google Scholar 

  5. Tsang, Y.C.: Building software agents to assist teaching in distance learning environments. In: Proceedings of the Fifth IEEE International Conference on Advanced Learning Technologies, ICALT 2005, pp. 230–232. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  6. Maes, P.: Agents that reduce work and information overload. Commun. ACM 37, 30–40 (1994)

    Article  Google Scholar 

  7. Arcos, J., Esteva, M., Noriega, P., Rodriguez-Aguilar, J., Sierra, C.: Engineering open environments with electronic institutions. Engineering Applications of Artificial Intelligence, 191–204 (2005)

    Google Scholar 

  8. Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive environments. International Journal of Web Information Systems 5, 410–430 (2009)

    Article  Google Scholar 

  9. García-Vázquez, J.P., Rodríguez, M.D., Tentori, M.E., Saldaña, D., Andrade, Á.G., Espinoza, A.N.: An agent-based architecture for developing activity-aware systems for assisting elderly. j-jucs 16, 1500–1520 (2010)

    Google Scholar 

  10. Wu, J.: Contract net protocol for coordination in multi-agent system. In: Second International Symposium on Intelligent Information Technology Application, IITA 2008, vol. 2, pp. 1052–1058 (2008)

    Google Scholar 

  11. Gasparovic, B., Mezei, I.: Auction aggregation protocols for agent-based task assignment in multi-hop wireless sensor and robot networks. In: 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 247–252 (2011)

    Google Scholar 

  12. Saldaña-Jimenez, D., Rodríguez, M.D., García-Vázquez, J.-P., Espinoza, A.-N.: Elder: An ontology for enabling living independently of risks. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 622–627. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Myers, K.L., Yorke-Smith, N.: Proactive behavior of a personal assistive agent. In: Proceedings of the AAMAS Workshop on Metareasoning in Agent-Based Systems, Honolulu, HI, pp. 31–45 (2007)

    Google Scholar 

  14. Orwig, D., Brandt, N., Gruber-Baldini, A.L.: Medication management assessment for older adults in the community. The Gerontologist 46, 661–668 (2006)

    Article  Google Scholar 

  15. Nardi, B.: Context and Consciousness: Activity Theory and Human-Computer Interaction. MIT Press (1996)

    Google Scholar 

  16. Engeström, Y., Miettinen, R., Punamäki, R.: Perspectives on Activity Theory. Learning in Doing: Social, Cognitive and Computational Perspectives. Cambridge University Press (1999)

    Google Scholar 

  17. Cassens, J., Kofod-Petersen, A.: Using activity theory to model context awareness: a qualitative case study. In: Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society Conference, pp. 619–624 (2006)

    Google Scholar 

  18. Alvira, T., Clavell, L., Melendo, T.: Metafísica. Libros de Iniciación Filosófica. Universidad de Navarra, Ediciones (1982)

    Google Scholar 

  19. Pearl, J.: Causality. Models, Reasoning, and Inference. Cambridge University Press (2000)

    Google Scholar 

  20. Pearl, J., Robins, J.: Probabilistic evaluation of sequential plans for causal models with hidden variables. In: Besnard, P., Hanks, S. (eds.) Uncertainty in Artificial Intelligence, vol. 11, pp. 444–453 (1995)

    Google Scholar 

  21. Cramer, J.A., Roy, A., Burrell, A., Fairchild, C.J., Fuldeore, M.J., Ollendorf, D.A., Wong, P.K.: Medication compliance and persistence: Terminology and definitions. Value in Health 11, 44–47 (2008)

    Article  Google Scholar 

  22. Akers, S.: Binary decision diagrams. IEEE Transactions on Computers C-27, 509–516 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ceballos, H., García-Vázquez, J.P., Brena, R. (2013). Using Activity Theory and Causal Diagrams for Designing MultiAgent Systems That Assist Human Activities. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45114-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45114-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45113-3

  • Online ISBN: 978-3-642-45114-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics