Advertisement

Laser Induced Breakdown Spectroscopy for Analysis of Aerosols

  • Prasoon K. DiwakarEmail author
  • Pramod Kulkarni
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 182)

Abstract

LIBS has been successfully applied for analysis of variety of samples including solids, liquids, gases and aerosols. In this chapter the focus will be on the application of LIBS for aerosol analysis. LIBS is well suited for aerosol analysis due to the discrete nature of LIBS plasma volume as well as discrete nature of aerosol particles. This unique sampling nature is advantageous as well as challenging at times. During the past decade various research groups have worked on understanding and solving the fundamental and application related issues associated with aerosol analysis using LIBS which has led to better understanding of the processes as well as development of novel LIBS based instruments. In this chapter the discussion will include aerosol sampling physics, novel sampling approaches, figures of merit and matrix effect in aerosol analysis using LIBS.

Keywords

Plasma Volume Aerosol Particle Aerosol Sampling Conditional Analysis Single Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Kulkarni, P.A. Baron, K. Willeke, in Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn, ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Inc., Hoboken, 2011)Google Scholar
  2. 2.
    A.S. Wexler, V.J. Murray, in Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn, ed. P.S. Kulkarni, P.A. Baron, K. Willekwe (John Wiley & Sons, Inc., Hoboken, 2011)Google Scholar
  3. 3.
    P. Diwakar, P. Kulkarni, M.E. Birch, Aerosol Sci. Tech. 46, 316–332 (2012)CrossRefGoogle Scholar
  4. 4.
    P.K. Diwakar, P. Kulkarni, J. Anal. Atom. Spectrom. 27, 1101–1109 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Zelenyuk, D. Imre, Int. Rev. Phys. Chem. 28, 309–358 (2009)CrossRefGoogle Scholar
  6. 6.
    M.R. Canagaratna, J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R. Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L.R. Williams, A.M. Trimborn, M.J. Northway, P.F. DeCarlo, C.E. Kolb, P. Davidovits, D.R. Worsnop, Mass Spectrom. Rev. 26, 185–222 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Goujon, A. Giakoumaki, V. Pinon, O. Musset, D. Anglos, E. Georgiou, J.P. Boquillon, Spectrochim. Acta B 63, 1091–1096 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Goujon, O. Musset, A. Giakoumaki, V. Pinon, D. Anglos, E. Georgiou, Proc Spie 6871 (2008)Google Scholar
  9. 9.
    R.A. Myers, A.M. Karger, D.W. Hahn, Appl. Optics 42, 6072–6077 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    B. Salle, D.A. Cremers, S. Maurice, R.C. Wiens, P. Fichet, Spectrochim. Acta B 60, 805–815 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    P.K. Diwakar, University of Florida (2009)Google Scholar
  12. 12.
    J.E. Carranza, B.T. Fisher, G.D. Yoder, D.W. Hahn, Spectrochim. Acta B 56, 851–864 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    P.K. Diwakar, K.H. Loper, A.M. Matiaske, D.W. Hahn, J. Anal. Atom. Spectrom. 27, 1110–1119 (2012)CrossRefGoogle Scholar
  14. 14.
    A.J. Ball, V. Hohreiter, D.W. Hahn, Appl. Spectrosc. 59, 348–353 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    S.G. Buckley, H.A. Johnsen, K.R. Hencken, D.W. Hahn, Waste Manage. 20, 455–462 (2000)CrossRefGoogle Scholar
  16. 16.
    D.W. Hahn, N. Omenetto, Appl. Spectrosc. 64, 335a–366a (2010)ADSCrossRefGoogle Scholar
  17. 17.
    D.W. Hahn, Spectroscopy, 2010, 23–28Google Scholar
  18. 18.
    D.W. Hahn, M.M. Lunden, Aerosol Sci. Tech. 33, 30–48 (2000)CrossRefGoogle Scholar
  19. 19.
    D.W. Hahn, W.L. Flower, K.R. Hencken, Appl. Spectrosc. 51, 1836–1844 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    J.E. Carranza, D.W. Hahn, J. Anal. Atom. Spectrom. 17, 1534–1539 (2002)CrossRefGoogle Scholar
  21. 21.
    J.E. Carranza, K. Iida, D.W. Hahn, Appl. Optics. 42, 6022–6028 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    B. Hettinger, V. Hohreiter, M. Swingle, D.W. Hahn, Appl. Spectrosc. 60, 237–245 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    K. Iida, C.Y. Wu, D.W. Hahn, Combust. Sci. Technol. 176, 453–480 (2004)Google Scholar
  24. 24.
    P.K. Diwakar, P.B. Jackson, D.W. Hahn, Spectrochim. Acta B 62, 1466–1474 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    V. Hohreiter, D.W. Hahn, Anal. Chem. 78, 1509–1514 (2006)CrossRefGoogle Scholar
  26. 26.
    V. Hohreiter, A.J. Ball, D.W. Hahn, J. Anal. Atom. Spectrom. 19, 1289–1294 (2004)CrossRefGoogle Scholar
  27. 27.
    V. Hohreiter, D.W. Hahn, Anal. Chem. 77, 1118–1124 (2005)CrossRefGoogle Scholar
  28. 28.
    J.W. Olesik, Appl. Spectrosc. 51, A158–A175 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    M. Essien, L.J. Radziemski, J. Sneddon, J. Anal. Atom. Spectrom. 3, 985–988 (1988)CrossRefGoogle Scholar
  30. 30.
    B.C. Windom, P.K. Diwakar, D.W. Hahn, Spectrochim. Acta B 61, 788–796 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    D. Mukherjee, A. Rai, M.R. Zachariah, Aerosol Sci. 37, 677–695 (2006)CrossRefGoogle Scholar
  32. 32.
    E. Tognoni, M. Hidalgo, A. Canals, G. Cristoforetti, S. Legnaioli, A. Salvetti, V. Palleschi, Spectrochim. Acta Part B 78, 1509–1514 (2006)Google Scholar
  33. 33.
    S. Groh, P.K. Diwakar, C.C. Garcia, A. Murtazin, D.W. Hahn, K. Niemax, Anal. Chem. 82, 2568–2573 (2010)CrossRefGoogle Scholar
  34. 34.
    R.E. Russo, R. Withnell, G.M. Hieftje, Appl. Spectrosc. 35, 531–536 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    A.C. Lazar, P.B. Farnsworth, Appl. Spectrosc. 51, 617–624 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    S. Groh, C.C. Garcia, A. Murtazin, V. Horvatic, K. Niemax, Spectrochim. Acta B 64, 247–254 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, P. Koke, Spectrochim. Acta B 60, 993–1001 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    P.K. Diwakar, S. Groh, K. Niemax, D.W. Hahn, J. Anal. Atom. Spectrom. 25, 1921–1930 (2010)CrossRefGoogle Scholar
  39. 39.
    K.M. Lo, N.H. Cheung, Appl. Spectrosc. 56, 682–688 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    R. Knopp, F.J. Scherbaum, J.I. Kim, Fresen J. Anal. Chem. 355, 16–20 (1996)CrossRefGoogle Scholar
  41. 41.
    H.A. Archontaki, S.R. Crouch, Appl. Spectrosc. 42, 741–746 (1988)ADSCrossRefGoogle Scholar
  42. 42.
    D.A. Cremers, L.J. Radziemski, T.R. Loree, Appl. Spectrosc. 38, 721–729 (1984)ADSCrossRefGoogle Scholar
  43. 43.
    K. Park, G. Cho, J.H. Kwak, Aerosol Sci. Tech. 43, 375–386 (2009)CrossRefGoogle Scholar
  44. 44.
    U. Panne, R.E. Neuhauser, M. Theisen, H. Fink, R. Niessner, Spectrochim. Acta B 56, 839–850 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    T. Kuhlen, C. Frickee-Begemann, N. Strauss, R. Noll, Spectrochim. Acta B 63, 1171–1176 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    B.C. Windom, D.W. Hahn, J. Anal. Atom. Spectrom. 24, 1665–1675 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue UniversityWest LafayetteUSA
  2. 2.Center for Disease Control and PreventionNational Institute for Occupational Safety and HealthCincinnatiUSA

Personalised recommendations