Advertisement

LIBS Instrumental Techniques

  • Sergio MusazziEmail author
  • Umberto Perini
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 182)

Abstract

The laser induced breakdown spectroscopy (LIBS) is a laser based technique widely used in scientific and industrial applications for the elemental analysis of materials. Because of its very attractive features like e.g. the lack of sample preparation, the ability to perform multi-element real-time analysis and the possibility of in situ analysis, this technique has become very popular during last years. As a consequence a large number of LIBS systems with different experimental configuration have so far been developed. The purpose of this chapter is to provide a description of the basic components of a LIBS system and how their technical specifications as well as their design/configuration may affect LIBS measurements.

Keywords

Plasma Plume Laser Induce Breakdown Spectroscopy Streak Camera Rayleigh Range Intensify Charge Couple Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been financed by the Research Fund for the Italian Electrical System under the Contract Agreement between RSE (formerly known as ERSE) and the Ministry of Economic Development—General Directorate for Nuclear Energy, Renewable Energy and Energy Efficiency stipulated on July 29, 2009 in compliance with the Decree of March 19, 2009.

References

  1. 1.
    L.J. Radziemski, D.A. Cremers (eds.), Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989)Google Scholar
  2. 2.
    A.W. Miziolek, V. Palleschi, I. Schechter (eds.), Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, Cambridge, 2006)Google Scholar
  3. 3.
    D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006)Google Scholar
  4. 4.
    J.P. Singh, S.N. Thakur (eds.), Laser-Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007)Google Scholar
  5. 5.
    A.E. Siegman, Lasers (University Science Book, Sansalito, 1986)Google Scholar
  6. 6.
    O. Svelto, Principles of Lasers, 5th edn. (Springer, New York, 2010)Google Scholar
  7. 7.
    R. Menzel, Photonics (Springer, Berlin, 2001)Google Scholar
  8. 8.
    K. Tomiyasu, IEEE J. Quant. Electron. 1, 144 (1965)Google Scholar
  9. 9.
    G.D. Reid, K. Wynne, in Encyclopaedia of Analytical Chemistry, ed. by R.A. Meyers. (Wiley, Chichester, 2000), pp. 13644–13670Google Scholar
  10. 10.
    U. Keller, Nature 424, 831 (2003)ADSGoogle Scholar
  11. 11.
    R.A. Hann, D. Bloor (eds.), Organic Materials for Nonlinear Optics (Royal Society of Chemistry, London, 1989)Google Scholar
  12. 12.
    E.L. Guerevich, R. Hergenroder, Appl. Spectr. 61(10), 233A (2007)ADSGoogle Scholar
  13. 13.
    A. Semerok, C. Chaleard, V. Detalle, J.L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, Appl. Surf. Sci. 311, 138–139 (1999)Google Scholar
  14. 14.
    S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, F. Quéré, Appl. Surf. Sci. 186, 364 (2002)ADSGoogle Scholar
  15. 15.
    M.R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, J.B. Spicer, Sensors 10, 4342 (2010)Google Scholar
  16. 16.
    D.E. Spence, P.N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991)ADSGoogle Scholar
  17. 17.
    K. Yamakawa, C.P.J. Barty, IEEE J. Sel. Top. Quant. 6, 658 (2000)Google Scholar
  18. 18.
    D. Strickland, G. Mourou, Opt. Commun. 55, 447 (1985)ADSGoogle Scholar
  19. 19.
    D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)ADSGoogle Scholar
  20. 20.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)ADSGoogle Scholar
  21. 21.
    O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T.W. Johnston, S. Laville, B. Le Drogoff, Spectrochim. Acta Part B 60, 905 (2005)ADSGoogle Scholar
  22. 22.
    X. Zeng, X. Mao, R. Greif, R.E. Russo, Proc. SPIE 5448, 1150 (2004)ADSGoogle Scholar
  23. 23.
    I.V. Cravetchi, M.T. Taschuk, Y.Y, Tsui, Anal. Bioanal. Chem. 385, 287 (2006)Google Scholar
  24. 24.
    J.F.Y. Gravel, F.R. Doucet, P. Bouchard, M. Sabsabi, J. Anal. At. Spectrom. 26, 1354 (2011)Google Scholar
  25. 25.
    F. He, J.H.V. Price, K.T. Vu, A. Malinowski, J.K. Sahu, D.J. Richardson, Opt. Exp. 14(26), 12846 (2006)ADSGoogle Scholar
  26. 26.
    B. Shiner, Ind. Laser Solut. Manuf. 21, 24 (2006)Google Scholar
  27. 27.
    Y. Wang, J. Lightwave Technol. 23, 2139 (2005)ADSGoogle Scholar
  28. 28.
    G.M. Weyl, in Laser Induced Plasma and Application, ed. by L.J. Radziemski, D.A. Cremers (Marcel Dekker, New York, 1989), p. 302–305Google Scholar
  29. 29.
    R.E. Russo, X.L. Mao, H. Liu, J. Gonzales, S.S. Mao, Talanta 57, 425 (2002)Google Scholar
  30. 30.
    S. Shuttelworth, Appl. Surf. Sci. 96, 513 (1996)ADSGoogle Scholar
  31. 31.
    M. Ducreux-Zappa, J.M. Mermet, Spectrochim. Acta Part B 51, 333 (1996)ADSGoogle Scholar
  32. 32.
    S.F. Durrant, J. Anal. At. Spectrom. 14, 1385 (1999)Google Scholar
  33. 33.
    L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, V. Lazic, Anal. Bioanal. Chem. 385, 272 (2006)Google Scholar
  34. 34.
    L.M. Cabalin, J.J. Laserna, Spectrochim. Acta Part B 53, 723 (1998)ADSGoogle Scholar
  35. 35.
    X.L. Mao, A.C. Ciocan, R.E. Russo, Appl. Spectrosc. 52, 913 (1998)ADSGoogle Scholar
  36. 36.
    R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, V. Spizzichino, in Advances in Spectroscopy for Lasers and Sensing, ed. by B. Di Bartolo, O. Forte, (Springer, New York, 2006), pp. 229–254Google Scholar
  37. 37.
    L.M. Cabalin, D. Romero, C.C. Garcia, J.M. Baena, J.J. Laserna, Anal. Bioanal. Chem. 372, 352 (2002)Google Scholar
  38. 38.
    D. Menut, P. Fichet, J. Lacour, A. Rivoallan, P. Mauchien, Appl. Optics 42, 6063 (2003)ADSGoogle Scholar
  39. 39.
    C. Gomez, A. Costela, I. Garcia-Moreno, R. Sastre, Appl. Surf. Sci. 252, 2782 (2006)ADSGoogle Scholar
  40. 40.
    D. Von der Linde, K. Sokolowsky-Tinten, J. Bialkowski, Appl. Surf. Sci. 1, 109–110 (1997)Google Scholar
  41. 41.
    P. Rohwetter, J. Yu, J. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.P. Wolf, L. Woste, J. Anal. At. Spectrom. 19, 437 (2004)Google Scholar
  42. 42.
    V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenröder, Spectrochim. Acta Part B 55, 1771 (2000)ADSGoogle Scholar
  43. 43.
    B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnermann, Appl. Phys. 63, 109 (1996)Google Scholar
  44. 44.
    S.S. Mao, X. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 77, 2464 (2000)ADSGoogle Scholar
  45. 45.
    J.B. Sirven, B. Bousquet, L. Canioni, L. Sarger, Spectrochim. Acta Part B 59, 1033 (2004)ADSGoogle Scholar
  46. 46.
    B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthelemy, T.W. Johnston, S. Laville, F. Vidal, Appl. Spectrosc. 58, 122 (2004)ADSGoogle Scholar
  47. 47.
    M. Baudelet, L. Guyon, J. Yu, J.P. Wolf, T. Amodeo, E. Frejafon, P. Laloi, J. Appl. Phys. 99, 084701–084709 (2006)ADSGoogle Scholar
  48. 48.
    B. Wolf-Rotke, J. Ihlemann, H. Schmidt, A. Scholl, Appl. Phys. A 60, 13 (1995)ADSGoogle Scholar
  49. 49.
    C. Argon, J.A. Aguillera, F. Penalba, Appl. Spectrosc. 53, 1259 (1999)ADSGoogle Scholar
  50. 50.
    D.W. Hann, N. Omenetto, Appl. Spectrosc. 64, 335A (2010)ADSGoogle Scholar
  51. 51.
    I.B. Gornushkin, K. Amponsah-Manager, B.W. Smith, N. Omenetto, J.D. Winefordner, Appl. Specrosc. 58, 762 (2004)ADSGoogle Scholar
  52. 52.
    G. Galbacs, V. Budavari, Z. Geretovszky, J. Anal. At. Spectrom. 20, 974 (2005)Google Scholar
  53. 53.
    A.S. Eppler, D.A. Cremers, D.D. Hickmott, M.J. Ferris, A.C. Koskelo, Appl. Spectrosc. 50, 1175 (1996)ADSGoogle Scholar
  54. 54.
    F. Fichet, P. Mauchien, J.F. Wagner, C. Moulin, Anal. Chim. Acta 429, 269 (2001)Google Scholar
  55. 55.
    B. Sallé, P. Mauchien, S. Maurice, Spectrochim. Acta Part B 62, 739 (2007)ADSGoogle Scholar
  56. 56.
    S. Palanco, J. Laserna, Rev. Sci. Instrum. 75, 2068 (2004)ADSGoogle Scholar
  57. 57.
    A.K. Rai, H. Zhang, F.Y. Yueh, J.P. Singh, A. Weisburg, Spectrochim. Acta Part B 56, 2371 (2001)ADSGoogle Scholar
  58. 58.
    D.A. Cremers, J.E. Barefield II, A.C. Koskelo, Appl. Spectrosc. 49, 857 (1995)ADSGoogle Scholar
  59. 59.
    A.I. Whitehouse, J. Young, I.M. Botheroyd, S. Lawson, C.P. Evans, J. Wright, Spectrochim. Acta Part B 56, 821 (2001)ADSGoogle Scholar
  60. 60.
    C.M. Davies, H.H. Telle, D.J. Montgomery, R.E. Corbett, Spectrochim. Acta Part B 50, 1059 (1995)ADSGoogle Scholar
  61. 61.
    K.Y. Yamamoto, D.A. Cremers, M.J. Ferris, I.E. Foster, Appl. Spectrosc. 50, 222 (1996)ADSGoogle Scholar
  62. 62.
    R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H.J.L. Van der Steen, M. Angelone, Appl. Phys. B 65, 1101 (1997)Google Scholar
  63. 63.
    B.J. Marquardt, D.N. Stratis, D.A. Cremers, S.M. Angel, Appl. Spectrosc. 52, 1148 (1998)ADSGoogle Scholar
  64. 64.
    R.E. Neuhauser, U. Panne, R. Niessner, Appl. Spectrosc. 54, 923 (2000)ADSGoogle Scholar
  65. 65.
    H. Zhang, F.Y. Yueh, J.P. Sing, Appl. Optics 38, 1459 (1999)ADSGoogle Scholar
  66. 66.
    L.S. Greek, H.G. Schulze, M.W. Blades, C.A. Haines, K.F. Klein, R.F. Turner, Appl. Optics 37(1), 170 (1998)ADSGoogle Scholar
  67. 67.
    P. Karlitschek, K.F. Klein, G. Hillrichs, Proc. SPIE 2966, 620 (1996)ADSGoogle Scholar
  68. 68.
    A.E. Pichahchy, D.A. Cremers, M.J. Ferris, Spectrochim. Acta Part B 52, 25 (1997)ADSGoogle Scholar
  69. 69.
    R. Sattmann, V. Sturm, R. Noll, J. Phys. D 28, 2181 (1995)ADSGoogle Scholar
  70. 70.
    D.N. Stratis, K.L. Eland, S.M. Angel, Appl. Spectrosc. 55, 1297 (2001)ADSGoogle Scholar
  71. 71.
    M. Kuzuya, H. Matsumoto, H. Takechi, O. Mikami, Appl. Spectrosc. 47, 1659 (1993)ADSGoogle Scholar
  72. 72.
    K.J. Grant, G.L. Paul, Appl. Spectrosc. 44, 1349 (1990)ADSGoogle Scholar
  73. 73.
    S. Bashir, N. Farid, K. Mahmood, M.S. Rafique, Appl. Phys. A 107, 203 (2012)ADSGoogle Scholar
  74. 74.
    D.A. Cremers, L.J. Radziemski, T.R. Loree, Appl. Spectrosc. 38, 721 (1984)ADSGoogle Scholar
  75. 75.
    C.W. Ng, W.P. Ho, N.H. Cheung, Appl. Spectrosc. 51, 976 (1997)ADSGoogle Scholar
  76. 76.
    C.E. Romero, R. De Saro, J. Craparo, A. Weisberg, R. Moreno, Z. Yao, Energy Fuels 24, 510 (2010)Google Scholar
  77. 77.
    W. Yin, L. Zhang, L. Dong, W. Ma, S. Jia, Appl. Spectrosc. 63, 865 (2009)ADSGoogle Scholar
  78. 78.
    LIBSCAN Modular LIBS Systems (2012), ERCo catalog, http://www.er-co.com. Accessed 15 Dec. 2012
  79. 79.
    D.E. Kim, K.J. Yoo, H.K. Park, K.J. Oh, D.W. Kim, Appl. Spectrosc. 51, 22 (1997)ADSGoogle Scholar
  80. 80.
    R. Krasniker, V. Bulatov, I. Schecter, Spectrochim. Acta Part B 56, 609 (2001)ADSGoogle Scholar
  81. 81.
    R.A. Muntari, L.E. Foster, D.A. Cremers, M.J. Ferris, Appl. Spectrosc. 50, 1483 (1996)ADSGoogle Scholar
  82. 82.
    F. Colao, V. Lazic, R. Fantoni, S. Pershin, Spectrochim. Acta Part B 57, 1167 (2002)ADSGoogle Scholar
  83. 83.
    G. Galbacs, V. Budavàri, Z. Geretovszky, J. Anal. At. Spectrom. 20, 974 (2005)Google Scholar
  84. 84.
    P. Fichet, D. Menut, R. Brennetot, E. Vors, A. Rivoallan, Appl. Optics 42, 6029 (2003)ADSGoogle Scholar
  85. 85.
    C. Polmer, Diffraction Grating Handbook, 6th edn. (Newton Compton, New York, 2005)Google Scholar
  86. 86.
    C. Th, J. Alkemade, T. Hollander, W. Snelleman, P.J.T. Zeegers, Metal Vapours in Flames (Pergamon Press, Oxford, 1982), pp. 241–253Google Scholar
  87. 87.
    S. Palanco, J. Laserna, J. Anal. At. Spectrom. 15, 1321 (2000)Google Scholar
  88. 88.
    D. Body, B.L. Chadwick, Rev. Sci. Instrum. 72, 1625 (2001)ADSGoogle Scholar
  89. 89.
    R. Neuhauser, B. Ferstl, C. Haisch, U. Panne, R. Niessner, Rev. Sci. Instrum. 70, 3519 (1999)ADSGoogle Scholar
  90. 90.
    H.E. Bauer, F. Leis, K. Niemax, Spectrochim. Acta Part B 53, 1815 (1998)ADSGoogle Scholar
  91. 91.
    C. Haisch, U. Panne, R. Niessner, Spectrochim. Acta Part B 53, 1657 (1998)ADSGoogle Scholar
  92. 92.
    V. Detalle, R. Henon, M. Sabsabi, L. St-Onge, Spectrochim. Acta Part B 56, 1011 (2001)ADSGoogle Scholar
  93. 93.
    S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, Spectrochim. Acta Part B 56, 1027 (2001)ADSGoogle Scholar
  94. 94.
    P. Lindhlom, Anal. Chim. Acta 380, 353 (1999)Google Scholar
  95. 95.
    N. Kappelmann, J. Barnsted, K. Werner, H. Becker-Ross, S. Florek, Astrophys. Space Sci. 320, 191 (2009)ADSGoogle Scholar
  96. 96.
    C.D. Tran, Anal. Chem. 64, 971A (1992)Google Scholar
  97. 97.
    C.C. Hoyt, D.M. Benson, Photon. Spectra 26, 92 (1992)Google Scholar
  98. 98.
    R.A. Multari, L.E. Foster, D.A. Cremers, M.J. Ferris, Appl. Spectrosc. 50, 1483 (1996)ADSGoogle Scholar
  99. 99.
    R.A. Multari, D.A. Cremers, IEEE T. Plasma Sci. 24, 39 (1996)ADSGoogle Scholar
  100. 100.
    D.N. Stratis, K.L. Eland, J.C. Carter, S.J. Tomlinson, S.M. Angel, Appl. Spectrosc. 55, 999 (2001)ADSGoogle Scholar
  101. 101.
    R. Noll, V. Sturm, U. Aydin, D. Eilers, Spectrochim. Acta Part B 63, 1159 (2008)ADSGoogle Scholar
  102. 102.
    R.E. Neuhauser, B. Ferstl, C. Haisch, U. Panne, R. Niessner, Rev. Sci. Instrum. 70, 3519 (1999)ADSGoogle Scholar
  103. 103.
    J.S. Huang, C.B. Ke, L.S. Huang, K.C. Lin, Spectrochim. Acta Part B 57, 35 (2002)ADSGoogle Scholar
  104. 104.
    L. St-Onge, V. Detalle, M. Sabsabi, Spectrochim. Acta Part B 57, 121 (2002)ADSGoogle Scholar
  105. 105.
    J. Gruber, J. Heits, H. Strasser, D. Bauerle, N. Ramaseder, Spectrochim. Acta Part B 56, 685 (2001)ADSGoogle Scholar
  106. 106.
    H. Becker-Ross, S. Florek, H. Franken, B. Radziuk, M. Zehier, J. Anal. At. Spectrom. 15, 851 (2000)Google Scholar
  107. 107.
    Y.R. Chen, B. Sun, T. Han, Y.F. Kong, C.H. Xu, P. Zhou, X.F. Li, S.Y. Wang, Y.X. Zheng, L.Y. Chen, Opt. Exp. 13, 10051 (2005)Google Scholar
  108. 108.
    C. Haisch, U. Panne, R. Niessner, Spectrochim. Acta Part B 53, 1657 (1998)ADSGoogle Scholar
  109. 109.
    M.A. Khater, P. Van Kampen, J.T. Costello, J.P. Mosnier, E.T. Kennedy, Appl. Spectrosc. 55, 1430 (2001)Google Scholar
  110. 110.
    M. Sabsabi, V. Detalle, M.A. Harith, W. Tawfik, H. Imam, Appl. Optics 42, 6094 (2003)ADSGoogle Scholar
  111. 111.
    M. Sabsabi, R. Héon, L. St-Onge, Spectrochim. Acta Part B 60, 1211 (2005)ADSGoogle Scholar
  112. 112.
    J.E. Carranza, E. Gibb, B.W. Smith, D.W. Hahn, J.D. Winefordner, Appl. Optics 42, 6016 (2003)ADSGoogle Scholar
  113. 113.
    R. Noll, R. Sattmann, V. Sturm, S. Winkelmann, J. Anal. At. Spectrom. 19, 419 (2004)Google Scholar
  114. 114.
    D. Sevic, M. Rabasovic, B.P. Marincovic, IEEE T. Plasma Sci. 39, 2782 (2011)ADSGoogle Scholar
  115. 115.
    J. Noack, A. Vogel, Appl. Optics 37, 4092 (1996)ADSGoogle Scholar
  116. 116.
    S. Musazzi, U. Perini, E. Golinelli, F. Barberis, G.A. Zanetta, Elemental analysis of coal by means of the Laser Induced Breakdown Spectroscopy (LIBS) technique. Paper presented at the 2012 IEEE Sensor Application Symposium, University of Brescia, Brescia, 7–9 February 2012Google Scholar
  117. 117.
    H. Yago, K. Furuta, K. Ishikawa, H. Komura, Phys. Status Solid B Basic Res. 179(1), 223 (1993)Google Scholar
  118. 118.
    P. Yaroshchyk, R.J.S. Morrison, D. Body, B.L. Chadwick, Rev. Sci. Instrum. 75, 5050 (2004)ADSGoogle Scholar
  119. 119.
    D. Menut, M. Descotes, P. Meier, J. Radwan, P. Mauchien, C. Poinssot, Europium migration in argillaceous rocks: on the use of micro laser-induced breakdown spectroscopy (micro LIBS) as a microanalysis tool, in MRS proceedings (2006). doi: 10.1557/PROC-932-20.1 Google Scholar
  120. 120.
    G. Mungas, Appl. Optics 46, 4015 (2007)ADSGoogle Scholar
  121. 121.
    D. Menut, P. Fichet, J.L. Lacour, A. Rivoallan, P. Mauchien, Appl. Optics 42, 6063 (2003)ADSGoogle Scholar
  122. 122.
    Kigre catalog (2012), http://www.kigre.com. Accessed 15 Dec 2012
  123. 123.
    F.J. Fortes, J.J. Laserna, Spectrochim. Acta Part B 65, 975 (2010)ADSGoogle Scholar
  124. 124.
    C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, J. Braz. Chem. Soc. 18(3), 463 (2007)Google Scholar
  125. 125.
    D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347 (2012)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.TTDRicerca sul Sistema Energetico—RSE SpAMilanItaly

Personalised recommendations