Skip to main content

LIBS Instrumental Techniques

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 182))

Abstract

The laser induced breakdown spectroscopy (LIBS) is a laser based technique widely used in scientific and industrial applications for the elemental analysis of materials. Because of its very attractive features like e.g. the lack of sample preparation, the ability to perform multi-element real-time analysis and the possibility of in situ analysis, this technique has become very popular during last years. As a consequence a large number of LIBS systems with different experimental configuration have so far been developed. The purpose of this chapter is to provide a description of the basic components of a LIBS system and how their technical specifications as well as their design/configuration may affect LIBS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.J. Radziemski, D.A. Cremers (eds.), Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989)

    Google Scholar 

  2. A.W. Miziolek, V. Palleschi, I. Schechter (eds.), Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  3. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006)

    Google Scholar 

  4. J.P. Singh, S.N. Thakur (eds.), Laser-Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007)

    Google Scholar 

  5. A.E. Siegman, Lasers (University Science Book, Sansalito, 1986)

    Google Scholar 

  6. O. Svelto, Principles of Lasers, 5th edn. (Springer, New York, 2010)

    Google Scholar 

  7. R. Menzel, Photonics (Springer, Berlin, 2001)

    Google Scholar 

  8. K. Tomiyasu, IEEE J. Quant. Electron. 1, 144 (1965)

    Google Scholar 

  9. G.D. Reid, K. Wynne, in Encyclopaedia of Analytical Chemistry, ed. by R.A. Meyers. (Wiley, Chichester, 2000), pp. 13644–13670

    Google Scholar 

  10. U. Keller, Nature 424, 831 (2003)

    ADS  Google Scholar 

  11. R.A. Hann, D. Bloor (eds.), Organic Materials for Nonlinear Optics (Royal Society of Chemistry, London, 1989)

    Google Scholar 

  12. E.L. Guerevich, R. Hergenroder, Appl. Spectr. 61(10), 233A (2007)

    ADS  Google Scholar 

  13. A. Semerok, C. Chaleard, V. Detalle, J.L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, Appl. Surf. Sci. 311, 138–139 (1999)

    Google Scholar 

  14. S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, F. Quéré, Appl. Surf. Sci. 186, 364 (2002)

    ADS  Google Scholar 

  15. M.R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, J.B. Spicer, Sensors 10, 4342 (2010)

    Google Scholar 

  16. D.E. Spence, P.N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991)

    ADS  Google Scholar 

  17. K. Yamakawa, C.P.J. Barty, IEEE J. Sel. Top. Quant. 6, 658 (2000)

    Google Scholar 

  18. D. Strickland, G. Mourou, Opt. Commun. 55, 447 (1985)

    ADS  Google Scholar 

  19. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    ADS  Google Scholar 

  20. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    ADS  Google Scholar 

  21. O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T.W. Johnston, S. Laville, B. Le Drogoff, Spectrochim. Acta Part B 60, 905 (2005)

    ADS  Google Scholar 

  22. X. Zeng, X. Mao, R. Greif, R.E. Russo, Proc. SPIE 5448, 1150 (2004)

    ADS  Google Scholar 

  23. I.V. Cravetchi, M.T. Taschuk, Y.Y, Tsui, Anal. Bioanal. Chem. 385, 287 (2006)

    Google Scholar 

  24. J.F.Y. Gravel, F.R. Doucet, P. Bouchard, M. Sabsabi, J. Anal. At. Spectrom. 26, 1354 (2011)

    Google Scholar 

  25. F. He, J.H.V. Price, K.T. Vu, A. Malinowski, J.K. Sahu, D.J. Richardson, Opt. Exp. 14(26), 12846 (2006)

    ADS  Google Scholar 

  26. B. Shiner, Ind. Laser Solut. Manuf. 21, 24 (2006)

    Google Scholar 

  27. Y. Wang, J. Lightwave Technol. 23, 2139 (2005)

    ADS  Google Scholar 

  28. G.M. Weyl, in Laser Induced Plasma and Application, ed. by L.J. Radziemski, D.A. Cremers (Marcel Dekker, New York, 1989), p. 302–305

    Google Scholar 

  29. R.E. Russo, X.L. Mao, H. Liu, J. Gonzales, S.S. Mao, Talanta 57, 425 (2002)

    Google Scholar 

  30. S. Shuttelworth, Appl. Surf. Sci. 96, 513 (1996)

    ADS  Google Scholar 

  31. M. Ducreux-Zappa, J.M. Mermet, Spectrochim. Acta Part B 51, 333 (1996)

    ADS  Google Scholar 

  32. S.F. Durrant, J. Anal. At. Spectrom. 14, 1385 (1999)

    Google Scholar 

  33. L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, V. Lazic, Anal. Bioanal. Chem. 385, 272 (2006)

    Google Scholar 

  34. L.M. Cabalin, J.J. Laserna, Spectrochim. Acta Part B 53, 723 (1998)

    ADS  Google Scholar 

  35. X.L. Mao, A.C. Ciocan, R.E. Russo, Appl. Spectrosc. 52, 913 (1998)

    ADS  Google Scholar 

  36. R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, V. Spizzichino, in Advances in Spectroscopy for Lasers and Sensing, ed. by B. Di Bartolo, O. Forte, (Springer, New York, 2006), pp. 229–254

    Google Scholar 

  37. L.M. Cabalin, D. Romero, C.C. Garcia, J.M. Baena, J.J. Laserna, Anal. Bioanal. Chem. 372, 352 (2002)

    Google Scholar 

  38. D. Menut, P. Fichet, J. Lacour, A. Rivoallan, P. Mauchien, Appl. Optics 42, 6063 (2003)

    ADS  Google Scholar 

  39. C. Gomez, A. Costela, I. Garcia-Moreno, R. Sastre, Appl. Surf. Sci. 252, 2782 (2006)

    ADS  Google Scholar 

  40. D. Von der Linde, K. Sokolowsky-Tinten, J. Bialkowski, Appl. Surf. Sci. 1, 109–110 (1997)

    Google Scholar 

  41. P. Rohwetter, J. Yu, J. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.P. Wolf, L. Woste, J. Anal. At. Spectrom. 19, 437 (2004)

    Google Scholar 

  42. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenröder, Spectrochim. Acta Part B 55, 1771 (2000)

    ADS  Google Scholar 

  43. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnermann, Appl. Phys. 63, 109 (1996)

    Google Scholar 

  44. S.S. Mao, X. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 77, 2464 (2000)

    ADS  Google Scholar 

  45. J.B. Sirven, B. Bousquet, L. Canioni, L. Sarger, Spectrochim. Acta Part B 59, 1033 (2004)

    ADS  Google Scholar 

  46. B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthelemy, T.W. Johnston, S. Laville, F. Vidal, Appl. Spectrosc. 58, 122 (2004)

    ADS  Google Scholar 

  47. M. Baudelet, L. Guyon, J. Yu, J.P. Wolf, T. Amodeo, E. Frejafon, P. Laloi, J. Appl. Phys. 99, 084701–084709 (2006)

    ADS  Google Scholar 

  48. B. Wolf-Rotke, J. Ihlemann, H. Schmidt, A. Scholl, Appl. Phys. A 60, 13 (1995)

    ADS  Google Scholar 

  49. C. Argon, J.A. Aguillera, F. Penalba, Appl. Spectrosc. 53, 1259 (1999)

    ADS  Google Scholar 

  50. D.W. Hann, N. Omenetto, Appl. Spectrosc. 64, 335A (2010)

    ADS  Google Scholar 

  51. I.B. Gornushkin, K. Amponsah-Manager, B.W. Smith, N. Omenetto, J.D. Winefordner, Appl. Specrosc. 58, 762 (2004)

    ADS  Google Scholar 

  52. G. Galbacs, V. Budavari, Z. Geretovszky, J. Anal. At. Spectrom. 20, 974 (2005)

    Google Scholar 

  53. A.S. Eppler, D.A. Cremers, D.D. Hickmott, M.J. Ferris, A.C. Koskelo, Appl. Spectrosc. 50, 1175 (1996)

    ADS  Google Scholar 

  54. F. Fichet, P. Mauchien, J.F. Wagner, C. Moulin, Anal. Chim. Acta 429, 269 (2001)

    Google Scholar 

  55. B. Sallé, P. Mauchien, S. Maurice, Spectrochim. Acta Part B 62, 739 (2007)

    ADS  Google Scholar 

  56. S. Palanco, J. Laserna, Rev. Sci. Instrum. 75, 2068 (2004)

    ADS  Google Scholar 

  57. A.K. Rai, H. Zhang, F.Y. Yueh, J.P. Singh, A. Weisburg, Spectrochim. Acta Part B 56, 2371 (2001)

    ADS  Google Scholar 

  58. D.A. Cremers, J.E. Barefield II, A.C. Koskelo, Appl. Spectrosc. 49, 857 (1995)

    ADS  Google Scholar 

  59. A.I. Whitehouse, J. Young, I.M. Botheroyd, S. Lawson, C.P. Evans, J. Wright, Spectrochim. Acta Part B 56, 821 (2001)

    ADS  Google Scholar 

  60. C.M. Davies, H.H. Telle, D.J. Montgomery, R.E. Corbett, Spectrochim. Acta Part B 50, 1059 (1995)

    ADS  Google Scholar 

  61. K.Y. Yamamoto, D.A. Cremers, M.J. Ferris, I.E. Foster, Appl. Spectrosc. 50, 222 (1996)

    ADS  Google Scholar 

  62. R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H.J.L. Van der Steen, M. Angelone, Appl. Phys. B 65, 1101 (1997)

    Google Scholar 

  63. B.J. Marquardt, D.N. Stratis, D.A. Cremers, S.M. Angel, Appl. Spectrosc. 52, 1148 (1998)

    ADS  Google Scholar 

  64. R.E. Neuhauser, U. Panne, R. Niessner, Appl. Spectrosc. 54, 923 (2000)

    ADS  Google Scholar 

  65. H. Zhang, F.Y. Yueh, J.P. Sing, Appl. Optics 38, 1459 (1999)

    ADS  Google Scholar 

  66. L.S. Greek, H.G. Schulze, M.W. Blades, C.A. Haines, K.F. Klein, R.F. Turner, Appl. Optics 37(1), 170 (1998)

    ADS  Google Scholar 

  67. P. Karlitschek, K.F. Klein, G. Hillrichs, Proc. SPIE 2966, 620 (1996)

    ADS  Google Scholar 

  68. A.E. Pichahchy, D.A. Cremers, M.J. Ferris, Spectrochim. Acta Part B 52, 25 (1997)

    ADS  Google Scholar 

  69. R. Sattmann, V. Sturm, R. Noll, J. Phys. D 28, 2181 (1995)

    ADS  Google Scholar 

  70. D.N. Stratis, K.L. Eland, S.M. Angel, Appl. Spectrosc. 55, 1297 (2001)

    ADS  Google Scholar 

  71. M. Kuzuya, H. Matsumoto, H. Takechi, O. Mikami, Appl. Spectrosc. 47, 1659 (1993)

    ADS  Google Scholar 

  72. K.J. Grant, G.L. Paul, Appl. Spectrosc. 44, 1349 (1990)

    ADS  Google Scholar 

  73. S. Bashir, N. Farid, K. Mahmood, M.S. Rafique, Appl. Phys. A 107, 203 (2012)

    ADS  Google Scholar 

  74. D.A. Cremers, L.J. Radziemski, T.R. Loree, Appl. Spectrosc. 38, 721 (1984)

    ADS  Google Scholar 

  75. C.W. Ng, W.P. Ho, N.H. Cheung, Appl. Spectrosc. 51, 976 (1997)

    ADS  Google Scholar 

  76. C.E. Romero, R. De Saro, J. Craparo, A. Weisberg, R. Moreno, Z. Yao, Energy Fuels 24, 510 (2010)

    Google Scholar 

  77. W. Yin, L. Zhang, L. Dong, W. Ma, S. Jia, Appl. Spectrosc. 63, 865 (2009)

    ADS  Google Scholar 

  78. LIBSCAN Modular LIBS Systems (2012), ERCo catalog, http://www.er-co.com. Accessed 15 Dec. 2012

  79. D.E. Kim, K.J. Yoo, H.K. Park, K.J. Oh, D.W. Kim, Appl. Spectrosc. 51, 22 (1997)

    ADS  Google Scholar 

  80. R. Krasniker, V. Bulatov, I. Schecter, Spectrochim. Acta Part B 56, 609 (2001)

    ADS  Google Scholar 

  81. R.A. Muntari, L.E. Foster, D.A. Cremers, M.J. Ferris, Appl. Spectrosc. 50, 1483 (1996)

    ADS  Google Scholar 

  82. F. Colao, V. Lazic, R. Fantoni, S. Pershin, Spectrochim. Acta Part B 57, 1167 (2002)

    ADS  Google Scholar 

  83. G. Galbacs, V. Budavàri, Z. Geretovszky, J. Anal. At. Spectrom. 20, 974 (2005)

    Google Scholar 

  84. P. Fichet, D. Menut, R. Brennetot, E. Vors, A. Rivoallan, Appl. Optics 42, 6029 (2003)

    ADS  Google Scholar 

  85. C. Polmer, Diffraction Grating Handbook, 6th edn. (Newton Compton, New York, 2005)

    Google Scholar 

  86. C. Th, J. Alkemade, T. Hollander, W. Snelleman, P.J.T. Zeegers, Metal Vapours in Flames (Pergamon Press, Oxford, 1982), pp. 241–253

    Google Scholar 

  87. S. Palanco, J. Laserna, J. Anal. At. Spectrom. 15, 1321 (2000)

    Google Scholar 

  88. D. Body, B.L. Chadwick, Rev. Sci. Instrum. 72, 1625 (2001)

    ADS  Google Scholar 

  89. R. Neuhauser, B. Ferstl, C. Haisch, U. Panne, R. Niessner, Rev. Sci. Instrum. 70, 3519 (1999)

    ADS  Google Scholar 

  90. H.E. Bauer, F. Leis, K. Niemax, Spectrochim. Acta Part B 53, 1815 (1998)

    ADS  Google Scholar 

  91. C. Haisch, U. Panne, R. Niessner, Spectrochim. Acta Part B 53, 1657 (1998)

    ADS  Google Scholar 

  92. V. Detalle, R. Henon, M. Sabsabi, L. St-Onge, Spectrochim. Acta Part B 56, 1011 (2001)

    ADS  Google Scholar 

  93. S. Florek, C. Haisch, M. Okruss, H. Becker-Ross, Spectrochim. Acta Part B 56, 1027 (2001)

    ADS  Google Scholar 

  94. P. Lindhlom, Anal. Chim. Acta 380, 353 (1999)

    Google Scholar 

  95. N. Kappelmann, J. Barnsted, K. Werner, H. Becker-Ross, S. Florek, Astrophys. Space Sci. 320, 191 (2009)

    ADS  Google Scholar 

  96. C.D. Tran, Anal. Chem. 64, 971A (1992)

    Google Scholar 

  97. C.C. Hoyt, D.M. Benson, Photon. Spectra 26, 92 (1992)

    Google Scholar 

  98. R.A. Multari, L.E. Foster, D.A. Cremers, M.J. Ferris, Appl. Spectrosc. 50, 1483 (1996)

    ADS  Google Scholar 

  99. R.A. Multari, D.A. Cremers, IEEE T. Plasma Sci. 24, 39 (1996)

    ADS  Google Scholar 

  100. D.N. Stratis, K.L. Eland, J.C. Carter, S.J. Tomlinson, S.M. Angel, Appl. Spectrosc. 55, 999 (2001)

    ADS  Google Scholar 

  101. R. Noll, V. Sturm, U. Aydin, D. Eilers, Spectrochim. Acta Part B 63, 1159 (2008)

    ADS  Google Scholar 

  102. R.E. Neuhauser, B. Ferstl, C. Haisch, U. Panne, R. Niessner, Rev. Sci. Instrum. 70, 3519 (1999)

    ADS  Google Scholar 

  103. J.S. Huang, C.B. Ke, L.S. Huang, K.C. Lin, Spectrochim. Acta Part B 57, 35 (2002)

    ADS  Google Scholar 

  104. L. St-Onge, V. Detalle, M. Sabsabi, Spectrochim. Acta Part B 57, 121 (2002)

    ADS  Google Scholar 

  105. J. Gruber, J. Heits, H. Strasser, D. Bauerle, N. Ramaseder, Spectrochim. Acta Part B 56, 685 (2001)

    ADS  Google Scholar 

  106. H. Becker-Ross, S. Florek, H. Franken, B. Radziuk, M. Zehier, J. Anal. At. Spectrom. 15, 851 (2000)

    Google Scholar 

  107. Y.R. Chen, B. Sun, T. Han, Y.F. Kong, C.H. Xu, P. Zhou, X.F. Li, S.Y. Wang, Y.X. Zheng, L.Y. Chen, Opt. Exp. 13, 10051 (2005)

    Google Scholar 

  108. C. Haisch, U. Panne, R. Niessner, Spectrochim. Acta Part B 53, 1657 (1998)

    ADS  Google Scholar 

  109. M.A. Khater, P. Van Kampen, J.T. Costello, J.P. Mosnier, E.T. Kennedy, Appl. Spectrosc. 55, 1430 (2001)

    Google Scholar 

  110. M. Sabsabi, V. Detalle, M.A. Harith, W. Tawfik, H. Imam, Appl. Optics 42, 6094 (2003)

    ADS  Google Scholar 

  111. M. Sabsabi, R. Héon, L. St-Onge, Spectrochim. Acta Part B 60, 1211 (2005)

    ADS  Google Scholar 

  112. J.E. Carranza, E. Gibb, B.W. Smith, D.W. Hahn, J.D. Winefordner, Appl. Optics 42, 6016 (2003)

    ADS  Google Scholar 

  113. R. Noll, R. Sattmann, V. Sturm, S. Winkelmann, J. Anal. At. Spectrom. 19, 419 (2004)

    Google Scholar 

  114. D. Sevic, M. Rabasovic, B.P. Marincovic, IEEE T. Plasma Sci. 39, 2782 (2011)

    ADS  Google Scholar 

  115. J. Noack, A. Vogel, Appl. Optics 37, 4092 (1996)

    ADS  Google Scholar 

  116. S. Musazzi, U. Perini, E. Golinelli, F. Barberis, G.A. Zanetta, Elemental analysis of coal by means of the Laser Induced Breakdown Spectroscopy (LIBS) technique. Paper presented at the 2012 IEEE Sensor Application Symposium, University of Brescia, Brescia, 7–9 February 2012

    Google Scholar 

  117. H. Yago, K. Furuta, K. Ishikawa, H. Komura, Phys. Status Solid B Basic Res. 179(1), 223 (1993)

    Google Scholar 

  118. P. Yaroshchyk, R.J.S. Morrison, D. Body, B.L. Chadwick, Rev. Sci. Instrum. 75, 5050 (2004)

    ADS  Google Scholar 

  119. D. Menut, M. Descotes, P. Meier, J. Radwan, P. Mauchien, C. Poinssot, Europium migration in argillaceous rocks: on the use of micro laser-induced breakdown spectroscopy (micro LIBS) as a microanalysis tool, in MRS proceedings (2006). doi:10.1557/PROC-932-20.1

    Google Scholar 

  120. G. Mungas, Appl. Optics 46, 4015 (2007)

    ADS  Google Scholar 

  121. D. Menut, P. Fichet, J.L. Lacour, A. Rivoallan, P. Mauchien, Appl. Optics 42, 6063 (2003)

    ADS  Google Scholar 

  122. Kigre catalog (2012), http://www.kigre.com. Accessed 15 Dec 2012

  123. F.J. Fortes, J.J. Laserna, Spectrochim. Acta Part B 65, 975 (2010)

    ADS  Google Scholar 

  124. C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, J. Braz. Chem. Soc. 18(3), 463 (2007)

    Google Scholar 

  125. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347 (2012)

    ADS  Google Scholar 

Download references

Acknowledgments

This work has been financed by the Research Fund for the Italian Electrical System under the Contract Agreement between RSE (formerly known as ERSE) and the Ministry of Economic Development—General Directorate for Nuclear Energy, Renewable Energy and Energy Efficiency stipulated on July 29, 2009 in compliance with the Decree of March 19, 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Musazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Musazzi, S., Perini, U. (2014). LIBS Instrumental Techniques. In: Musazzi, S., Perini, U. (eds) Laser-Induced Breakdown Spectroscopy. Springer Series in Optical Sciences, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45085-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45085-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45084-6

  • Online ISBN: 978-3-642-45085-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics