Combustion Applications of Laser-Induced Breakdown Spectroscopy

  • Fang Y. Yueh
  • Markandey M. Tripathi
  • Jagdish P. SinghEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 182)


The Laser induced breakdown spectroscopy (LIBS) has been applied to combustion product and flame diagnostics. In this chapter, combustion applications of LIBS in past 30 years were reviewed. The various issues including experimental parameters and data processing methods that are important to combustion applications were discussed. Possible other applications that are important to combustion have also been addressed.


Equivalence Ratio Laser Induce Breakdown Spectroscopy Prompt Gamma Neutron Activation Analysis Combustion Diagnostics Laser Induce Breakdown Spectroscopy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Stoughton, Massachusetts, 1988)Google Scholar
  2. 2.
    L.J. Radziemski, R.W. Solarz, J.A. Paisner, Laser Spectroscopy and its Applications (Marcel Dekker, New York, 1986)Google Scholar
  3. 3.
    D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, London, 2006)CrossRefGoogle Scholar
  4. 4.
    A.W. Miziolek, V. Palleschi, I. Schechter, Laser Induced Breakdown 5 Spectroscopy (Cambridge University Press, New York, 2006)Google Scholar
  5. 5.
    J.P. Singh, S.N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier B.V, Amsterdam, 2007)Google Scholar
  6. 6.
    J. P. Singh, H. Zhang, F. Y. Yueh, R. L. Cook, in Proceedings of the 28th Intersociety Energy Conversion Engineering Conference (IECEC), vol. 1, pp. 995–1000 (1993)Google Scholar
  7. 7.
    J. Kiefer, J.W. Tröger, Z. Li, T. Seeger, M. Alden, A. Leipertz, Laser-induced breakdown flame thermometry. Combust. Flame 159(12), 3576–3582 (2012)Google Scholar
  8. 8.
    T.W. Lee, N. Hegde, Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature. Combust. Flame 142, 314–316 (2005)CrossRefGoogle Scholar
  9. 9.
    N. Kawahara, E. Tomita, T. Oka, Y. Ikeda, Fuel Concentration measurement of premixed mixture in a spark-ignition engine using spark-induced breakdown spectroscopy, in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010Google Scholar
  10. 10.
    K.E. Eseller, F.Y. Yueh, J.P. Singh, Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector. Appl. Opt. 47(31), G144–G148 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Kiefer, J.W. Tröger, Z.S. Li, M. Aldén, Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Appl Phys B: Lasers Opt 103, 229–236 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Lewtas, Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. 636, 95–133 (2007)CrossRefGoogle Scholar
  13. 13.
    S.G. Buckley, H.A. Johnsen, K.R. Hencken, D.W. Hahn, Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals. Waste Manage 20, 455–462 (2000)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, F. Y. Yueh, and J. P. Singh, Performance Evaluation of Laser-induced breakdown spectrometry as a multimetal continuous emission monitor. J. Air Waste Manage. Assoc. 51, 681–687 (2001)Google Scholar
  15. 15.
    H.S. Zhang, F.Y. Yueh, J.P. Singh, Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor. Appl. Opt. 38, 1459–1466 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Ryo, K. Ai, U. Shigeyuki, N. Makoto, K. Shinji, M. Hiroshi, Monitoring of volatile cadmium in flue gas from the waste incineration process using libs. J. Chem. Eng. Jpn. 38(7), 528–534 (2005)CrossRefGoogle Scholar
  17. 17.
    D.W. Hahn, W.L. Flower, K.R. Hencken, Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy. Appl. Spectrosc. 51(12), 1836–1844 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    D.W. Hahn, Laser-induced breakdown spectroscopy for sizing and elemetal analysis of discrete aerosol particles. Appl. Phys. Lett. 72(23), 2960–2962 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    D.W. Hahn, M.M. Lunden, Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 33, 30–48 (2000)CrossRefGoogle Scholar
  20. 20.
    P.K. Diwakar, K.H. Loper, Anna-Maria Matiaske and David. W. Hahn, Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J. Anal. At. Spectrom. 27, 1110–1119 (2012)CrossRefGoogle Scholar
  21. 21.
    D.W. Hahn, Laser-induced breakdown spectroscopy for analysis of aerosol particles: the path toward quantitative analysis. Spectroscopy 24, 26–33 (2009)Google Scholar
  22. 22.
    S.R. Turns, Thermodynamics: Concepts and Applications (Cambridge University Press, New York, 2006)Google Scholar
  23. 23.
    M.M. Tripathi, S.R. Krishnan, K.K. Srinivasan, F.Y. Yueh, J.P. Singh, Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames. Fuel 93, 684–691 (2012)CrossRefGoogle Scholar
  24. 24.
    T.X. Phuoc, F.P. White, Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture. Fuel 81, 1761–1765 (2002)CrossRefGoogle Scholar
  25. 25.
    F. Ferioli, P.V. Puzinauskas, S.G. Buckley, LIBS for real-time equivalence ratio measurements in a spark-ignited engine. Laser Induced Plasma Spectr. Appl. (2002),
  26. 26.
    F. Ferioli, P.V. Puzinauskas, S.G. Buckley, Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements. Appl. Spectrosc. 57(9), 1183–1189 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    F. Ferioli, S.G. Buckley, P.V. Puzinauskas, Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy. Int. J. Engine Res. 7(6), 447–457 (2006)CrossRefGoogle Scholar
  28. 28.
    F. Ferioli, S.G. Buckley, Measurements of hydrocarbons using laser-induced breakdown spectroscopy. Combust Flame 144, 435–447 (2006)CrossRefGoogle Scholar
  29. 29.
    P. Stavropoulos, A. Michalakou, G. Skevis, S. Couris, Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames. Spectrochim. Acta Part B 60, 1092–1097 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    P. Stavropoulos, A. Michalakou, G. Skevis, S. Couris, Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS). Chem. Phys. Lett. 404, 309–314 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    L. Zimmer, S. Tachibana, Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment. Proc. Combust. Inst. 31, 737–745 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Michalakou, P. Stavropoulos, S. Couris, Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon–air mixtures. Appl. Phys. Lett. 92, 081501 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    T.X. Phuoc, Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements. Opt. Lasers Eng. 44, 520–534 (2006)CrossRefMathSciNetGoogle Scholar
  34. 34.
    L. Zimmer, K. Okai, Y. Kurosawa, Combined laser induced ignition and plasma spectroscopy: fundamentals and application to a hydrogen-air combustor. Spectrochim. Acta B 62, 1484–1495 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    S. Joshi, D.B. Olsen, C. Dumitrescu, P.V. Puzinauskas, A.P. Yalin, Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines. Appl. Spectrosc. 63(5), 549–554 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    M.M. Tripathi, K.K. Srinivasan, S.R. Krishnan, F.Y. Yueh, J.P. Singh, A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane–air flames. Fuel (2012). doi: 10.1016/j.fuel.2012.10.079 Google Scholar
  37. 37.
    M.S. Mansour, H. Imam, K.A. Elsayed, W. Abbass, Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy. Spectrochim Acta B 64, 1079–1084 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Dackman, J.W.L. Lewis, Y.L. Chen, C.G. Parigger, Laser-induced breakdown spectroscopy for measurement of fuel/oxygen mixing in combustion, Digital holography and three-dimensional imaging, Joint DH and LACSEA Poster session (JMA), March 2008Google Scholar
  39. 39.
    A.E. Majd, A.S. Arabanian, R. Massudi, M. Nazeri, Spatially resolved laser-induced breakdown spectroscopy in methane-air diffusion flames. Appl. Spectrosc. 65(1), 36–42 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    S. Zhang, X. Yu, F. Li, G. Kang, L. Chen, X. Zhang, Laser induced breakdown spectroscopy for local equivalence ratio measurement of kerosene/air mixture at elevated pressure. Opt. Lasers Eng. 50, 877–882 (2012)CrossRefGoogle Scholar
  41. 41.
    M. Gaft, I. Sapir-Sofer, H. Modiano, R. Stana, Laser induced breakdown spectroscopy for bulk minerals online analyses. Spectrochim. Acta Part B 62, 1496–1503 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    M. Gaft, E. Dvir, H. Modiano, U. Schone., Laser induced breakdown spectroscopy machine for online ash analyses in coal. Spectrochim. Acta B 63, 1177–1182 (2008)Google Scholar
  43. 43.
    D.K. Ottesen, J.C.F. Wang, L.J. Radziemski, Real-time laser spark spectroscopy of particulates in combustion environments. Appl. Spectrosc. 43, 967–976 (1989)ADSCrossRefGoogle Scholar
  44. 44.
    D.K. Ottesen, L.L. Baxter, L.J. Radziemski, J.F. Burrows, Laser spark emission spectroscopy for in situ, real time monitoring of pulverized coal particle composition. Energy Fuels 5, 304–312 (1991)CrossRefGoogle Scholar
  45. 45.
    D. Body, B.L. Chadwick, Simultaneous elemental analysis system using laser induced breakdown spectroscopy. Rev. Sci. Instrum. 72, 1625–1629 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    B.L. Chadwick, D. Body, Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry. Appl. Spectrosc. 56, 70–74 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, Detection of carbon content in a high-temperature and high pressure environment using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 57, 701–709 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    M. Kurihara, K. Ikeda, Y. Izawa, Y. Deguchi, H. Tarui, Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy. Appl. Optics. 42(30), 6159–6165 (2003)Google Scholar
  49. 49.
    L.G. Blevins, C.R. Shaddix, S.M. Sickafoose, P.M. Walsh, Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Appl. Opt. 42(30), 6107–6118 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    W. Yin, L. Zhang, L. Dong, W. Ma, S. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants. Appl. Spectrosc. 63(8), 865–872 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    T. Ctvrtnickova, M.P. Mateo, A. Yañez, G. Nicolas, Characterization of coal fly ash components by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 64(10), 1093–1097 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    T. Ctvrtnickova, M.P. Mateo, A. Yañez, G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant. Spectrochim. Acta Part B 65(8), 734–737 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    L. Zhang, W. Ma, L. Dong, X. Yan, Z. Hu, Z. Li, Y. Zhang, L. Wang, W. Yin, S. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 65(7), 790–796 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    S. Yao, J. Lu, M. Dong, K. Chen, J. Li, J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis. Appl. Spectrosc. 65(10), 1197–1201 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    S. Yao, J. Lu, J. Zheng, M. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method. J. Anal. At. Spectrom. 27, 473–478 (2012)CrossRefGoogle Scholar
  56. 56.
    J. Feng, Z. Wang, L. West, Z. Li, W. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 400(10), 3261–3271 (2011)CrossRefGoogle Scholar
  57. 57.
    C. Romero, R. De Saro, J. Craparo, A. Weisberg, R. Moreno, Z. Yao, Laser-induced breakdown spectroscopy for coal characterization and assessing slagging propensity. Energy Fuels 24, 510 (2010)CrossRefGoogle Scholar
  58. 58.
    L. Zhang, L. Dong, H. Dou, W. Yin, S. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions. Appl. Spectrosc. 62, 458–463 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    M.P. Mateo, G. Nicolas, A. Yanez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations. Appl. Surf. Sci. 254(4), 868–872 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry. Appl. Opt. 44, 6718–6728 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    C. Chan, J.W. Daily, Measurement of temperature in flames using laser induced fluorescence spectroscopy of OH. Appl. Opt. 19(12), 1963–1968 (1980)ADSCrossRefGoogle Scholar
  62. 62.
    T.S. Cheng, S.R. March, R.W. Pitz, J.A. Wehrmeyer, J.Y. Chen, Laser raman measurements of temperature and species concentration in swirling lifted hydrogen jet diffusion flames. Int. J. Hydrogen Energy 37, 7900–7911 (2012)CrossRefGoogle Scholar
  63. 63.
    P.M. Hughes, T. Parameswaran, R.J. Lacelle, in CARS Temperature Measurements in Flames in Industrial Burners, In Industrial Combustion Testing, ed. by C.E. Baukal Jr. (CRC Press, Boca Raton, 2010), pp. 289–311Google Scholar
  64. 64.
    J. Kiefer, J.W. Tröger, Z.S. Li, M. Aldén, Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Appl. Phys. B 103, 229–236 (2011)Google Scholar
  65. 65.
    G.D. Tejwani, F.E. Bircher, D.V. Van Dyke, G.P. McVay, C.D. Stewart, L.A. Langford, Space-shuttle main engine exhaust-plume spectroscopy. Spectroscopy 11, 31–45 (1996)Google Scholar
  66. 66.
    G.W. Loge, J.P. Singh, F.Y. Yueh, H. Zhang, Hydrocarbon fueled rocket engine health monitoring by laser induced breakdown spectroscopy. Final report for contract No. NAS 13-99002, STTR Phase 1, (Oct 27, 1999)Google Scholar
  67. 67.
    H. Zhang, F.Y. Yueh, J.P. Singh, and R.L. Cook, G.W. Loge, Laser-induced breakdown spectroscopy in a metal-seeded flame, in Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety, vol. 1, pp. 695–600Google Scholar
  68. 68.
    V.N. Rai, P.J. Singh, C. Winstead, F.Y. Yueh, R.L. Cook, Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume. AIAA J 41, 2192–2199 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    S.G. Buckkey, C.S. Baldwin, K. Kratzsch, LIBS system and method for engine exhaust monitoring, US patent # 7202948 Apr 10, 2007Google Scholar
  70. 70.
    M. Thomas, S. Deaconu, J. Lewis, E. Coy, Laser induced breakdown spectroscopy (libs) applied to reacting gases for mixture ratio measurement and detection of metallic species, in Presented at the JANNAF 54th Propulsion Meeting/3rd Liquid Propulsion Subcommittee/2nd Spacecraft Propulsion Subcommittee/5th Modeling and Simulation Subcommittee Joint Meeting, Denver, CO, 14–17 May 2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fang Y. Yueh
    • 1
    • 3
  • Markandey M. Tripathi
    • 2
  • Jagdish P. Singh
    • 1
    • 3
    Email author
  1. 1.Institute for Clean Energy TechnologyMississippi State UniversityStarkvilleUSA
  2. 2.Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of Physics King Saud UniversityRiyadhKSA

Personalised recommendations