Skip to main content

Combustion Applications of Laser-Induced Breakdown Spectroscopy

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 182))

Abstract

The Laser induced breakdown spectroscopy (LIBS) has been applied to combustion product and flame diagnostics. In this chapter, combustion applications of LIBS in past 30 years were reviewed. The various issues including experimental parameters and data processing methods that are important to combustion applications were discussed. Possible other applications that are important to combustion have also been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Stoughton, Massachusetts, 1988)

    Google Scholar 

  2. L.J. Radziemski, R.W. Solarz, J.A. Paisner, Laser Spectroscopy and its Applications (Marcel Dekker, New York, 1986)

    Google Scholar 

  3. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, London, 2006)

    Book  Google Scholar 

  4. A.W. Miziolek, V. Palleschi, I. Schechter, Laser Induced Breakdown 5 Spectroscopy (Cambridge University Press, New York, 2006)

    Google Scholar 

  5. J.P. Singh, S.N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier B.V, Amsterdam, 2007)

    Google Scholar 

  6. J. P. Singh, H. Zhang, F. Y. Yueh, R. L. Cook, in Proceedings of the 28th Intersociety Energy Conversion Engineering Conference (IECEC), vol. 1, pp. 995–1000 (1993)

    Google Scholar 

  7. J. Kiefer, J.W. Tröger, Z. Li, T. Seeger, M. Alden, A. Leipertz, Laser-induced breakdown flame thermometry. Combust. Flame 159(12), 3576–3582 (2012)

    Google Scholar 

  8. T.W. Lee, N. Hegde, Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature. Combust. Flame 142, 314–316 (2005)

    Article  Google Scholar 

  9. N. Kawahara, E. Tomita, T. Oka, Y. Ikeda, Fuel Concentration measurement of premixed mixture in a spark-ignition engine using spark-induced breakdown spectroscopy, in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010

    Google Scholar 

  10. K.E. Eseller, F.Y. Yueh, J.P. Singh, Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector. Appl. Opt. 47(31), G144–G148 (2008)

    Article  Google Scholar 

  11. J. Kiefer, J.W. Tröger, Z.S. Li, M. Aldén, Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Appl Phys B: Lasers Opt 103, 229–236 (2010)

    Article  ADS  Google Scholar 

  12. J. Lewtas, Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. 636, 95–133 (2007)

    Article  Google Scholar 

  13. S.G. Buckley, H.A. Johnsen, K.R. Hencken, D.W. Hahn, Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals. Waste Manage 20, 455–462 (2000)

    Article  Google Scholar 

  14. H. Zhang, F. Y. Yueh, and J. P. Singh, Performance Evaluation of Laser-induced breakdown spectrometry as a multimetal continuous emission monitor. J. Air Waste Manage. Assoc. 51, 681–687 (2001)

    Google Scholar 

  15. H.S. Zhang, F.Y. Yueh, J.P. Singh, Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor. Appl. Opt. 38, 1459–1466 (1999)

    Article  ADS  Google Scholar 

  16. Y. Ryo, K. Ai, U. Shigeyuki, N. Makoto, K. Shinji, M. Hiroshi, Monitoring of volatile cadmium in flue gas from the waste incineration process using libs. J. Chem. Eng. Jpn. 38(7), 528–534 (2005)

    Article  Google Scholar 

  17. D.W. Hahn, W.L. Flower, K.R. Hencken, Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy. Appl. Spectrosc. 51(12), 1836–1844 (1997)

    Article  ADS  Google Scholar 

  18. D.W. Hahn, Laser-induced breakdown spectroscopy for sizing and elemetal analysis of discrete aerosol particles. Appl. Phys. Lett. 72(23), 2960–2962 (1998)

    Article  ADS  Google Scholar 

  19. D.W. Hahn, M.M. Lunden, Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 33, 30–48 (2000)

    Article  Google Scholar 

  20. P.K. Diwakar, K.H. Loper, Anna-Maria Matiaske and David. W. Hahn, Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J. Anal. At. Spectrom. 27, 1110–1119 (2012)

    Article  Google Scholar 

  21. D.W. Hahn, Laser-induced breakdown spectroscopy for analysis of aerosol particles: the path toward quantitative analysis. Spectroscopy 24, 26–33 (2009)

    Google Scholar 

  22. S.R. Turns, Thermodynamics: Concepts and Applications (Cambridge University Press, New York, 2006)

    Google Scholar 

  23. M.M. Tripathi, S.R. Krishnan, K.K. Srinivasan, F.Y. Yueh, J.P. Singh, Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames. Fuel 93, 684–691 (2012)

    Article  Google Scholar 

  24. T.X. Phuoc, F.P. White, Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture. Fuel 81, 1761–1765 (2002)

    Article  Google Scholar 

  25. F. Ferioli, P.V. Puzinauskas, S.G. Buckley, LIBS for real-time equivalence ratio measurements in a spark-ignited engine. Laser Induced Plasma Spectr. Appl. (2002), http://www.opticsinfobase.org/abstract.cfm?uri=LIBS-2002-ThE23

  26. F. Ferioli, P.V. Puzinauskas, S.G. Buckley, Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements. Appl. Spectrosc. 57(9), 1183–1189 (2003)

    Article  ADS  Google Scholar 

  27. F. Ferioli, S.G. Buckley, P.V. Puzinauskas, Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy. Int. J. Engine Res. 7(6), 447–457 (2006)

    Article  Google Scholar 

  28. F. Ferioli, S.G. Buckley, Measurements of hydrocarbons using laser-induced breakdown spectroscopy. Combust Flame 144, 435–447 (2006)

    Article  Google Scholar 

  29. P. Stavropoulos, A. Michalakou, G. Skevis, S. Couris, Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames. Spectrochim. Acta Part B 60, 1092–1097 (2005)

    Article  ADS  Google Scholar 

  30. P. Stavropoulos, A. Michalakou, G. Skevis, S. Couris, Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS). Chem. Phys. Lett. 404, 309–314 (2005)

    Article  ADS  Google Scholar 

  31. L. Zimmer, S. Tachibana, Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment. Proc. Combust. Inst. 31, 737–745 (2007)

    Article  Google Scholar 

  32. A. Michalakou, P. Stavropoulos, S. Couris, Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon–air mixtures. Appl. Phys. Lett. 92, 081501 (2008)

    Article  ADS  Google Scholar 

  33. T.X. Phuoc, Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements. Opt. Lasers Eng. 44, 520–534 (2006)

    Article  MathSciNet  Google Scholar 

  34. L. Zimmer, K. Okai, Y. Kurosawa, Combined laser induced ignition and plasma spectroscopy: fundamentals and application to a hydrogen-air combustor. Spectrochim. Acta B 62, 1484–1495 (2007)

    Article  ADS  Google Scholar 

  35. S. Joshi, D.B. Olsen, C. Dumitrescu, P.V. Puzinauskas, A.P. Yalin, Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines. Appl. Spectrosc. 63(5), 549–554 (2009)

    Article  ADS  Google Scholar 

  36. M.M. Tripathi, K.K. Srinivasan, S.R. Krishnan, F.Y. Yueh, J.P. Singh, A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane–air flames. Fuel (2012). doi:10.1016/j.fuel.2012.10.079

    Google Scholar 

  37. M.S. Mansour, H. Imam, K.A. Elsayed, W. Abbass, Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy. Spectrochim Acta B 64, 1079–1084 (2009)

    Article  ADS  Google Scholar 

  38. M. Dackman, J.W.L. Lewis, Y.L. Chen, C.G. Parigger, Laser-induced breakdown spectroscopy for measurement of fuel/oxygen mixing in combustion, Digital holography and three-dimensional imaging, Joint DH and LACSEA Poster session (JMA), March 2008

    Google Scholar 

  39. A.E. Majd, A.S. Arabanian, R. Massudi, M. Nazeri, Spatially resolved laser-induced breakdown spectroscopy in methane-air diffusion flames. Appl. Spectrosc. 65(1), 36–42 (2011)

    Article  ADS  Google Scholar 

  40. S. Zhang, X. Yu, F. Li, G. Kang, L. Chen, X. Zhang, Laser induced breakdown spectroscopy for local equivalence ratio measurement of kerosene/air mixture at elevated pressure. Opt. Lasers Eng. 50, 877–882 (2012)

    Article  Google Scholar 

  41. M. Gaft, I. Sapir-Sofer, H. Modiano, R. Stana, Laser induced breakdown spectroscopy for bulk minerals online analyses. Spectrochim. Acta Part B 62, 1496–1503 (2007)

    Article  ADS  Google Scholar 

  42. M. Gaft, E. Dvir, H. Modiano, U. Schone., Laser induced breakdown spectroscopy machine for online ash analyses in coal. Spectrochim. Acta B 63, 1177–1182 (2008)

    Google Scholar 

  43. D.K. Ottesen, J.C.F. Wang, L.J. Radziemski, Real-time laser spark spectroscopy of particulates in combustion environments. Appl. Spectrosc. 43, 967–976 (1989)

    Article  ADS  Google Scholar 

  44. D.K. Ottesen, L.L. Baxter, L.J. Radziemski, J.F. Burrows, Laser spark emission spectroscopy for in situ, real time monitoring of pulverized coal particle composition. Energy Fuels 5, 304–312 (1991)

    Article  Google Scholar 

  45. D. Body, B.L. Chadwick, Simultaneous elemental analysis system using laser induced breakdown spectroscopy. Rev. Sci. Instrum. 72, 1625–1629 (2001)

    Article  ADS  Google Scholar 

  46. B.L. Chadwick, D. Body, Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry. Appl. Spectrosc. 56, 70–74 (2002)

    Article  ADS  Google Scholar 

  47. M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, Detection of carbon content in a high-temperature and high pressure environment using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 57, 701–709 (2002)

    Article  ADS  Google Scholar 

  48. M. Kurihara, K. Ikeda, Y. Izawa, Y. Deguchi, H. Tarui, Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy. Appl. Optics. 42(30), 6159–6165 (2003)

    Google Scholar 

  49. L.G. Blevins, C.R. Shaddix, S.M. Sickafoose, P.M. Walsh, Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Appl. Opt. 42(30), 6107–6118 (2003)

    Article  ADS  Google Scholar 

  50. W. Yin, L. Zhang, L. Dong, W. Ma, S. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants. Appl. Spectrosc. 63(8), 865–872 (2009)

    Article  ADS  Google Scholar 

  51. T. Ctvrtnickova, M.P. Mateo, A. Yañez, G. Nicolas, Characterization of coal fly ash components by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 64(10), 1093–1097 (2009)

    Article  ADS  Google Scholar 

  52. T. Ctvrtnickova, M.P. Mateo, A. Yañez, G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant. Spectrochim. Acta Part B 65(8), 734–737 (2010)

    Article  ADS  Google Scholar 

  53. L. Zhang, W. Ma, L. Dong, X. Yan, Z. Hu, Z. Li, Y. Zhang, L. Wang, W. Yin, S. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 65(7), 790–796 (2011)

    Article  ADS  Google Scholar 

  54. S. Yao, J. Lu, M. Dong, K. Chen, J. Li, J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis. Appl. Spectrosc. 65(10), 1197–1201 (2011)

    Article  ADS  Google Scholar 

  55. S. Yao, J. Lu, J. Zheng, M. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method. J. Anal. At. Spectrom. 27, 473–478 (2012)

    Article  Google Scholar 

  56. J. Feng, Z. Wang, L. West, Z. Li, W. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 400(10), 3261–3271 (2011)

    Article  Google Scholar 

  57. C. Romero, R. De Saro, J. Craparo, A. Weisberg, R. Moreno, Z. Yao, Laser-induced breakdown spectroscopy for coal characterization and assessing slagging propensity. Energy Fuels 24, 510 (2010)

    Article  Google Scholar 

  58. L. Zhang, L. Dong, H. Dou, W. Yin, S. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions. Appl. Spectrosc. 62, 458–463 (2008)

    Article  ADS  Google Scholar 

  59. M.P. Mateo, G. Nicolas, A. Yanez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations. Appl. Surf. Sci. 254(4), 868–872 (2007)

    Article  ADS  Google Scholar 

  60. T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry. Appl. Opt. 44, 6718–6728 (2005)

    Article  ADS  Google Scholar 

  61. C. Chan, J.W. Daily, Measurement of temperature in flames using laser induced fluorescence spectroscopy of OH. Appl. Opt. 19(12), 1963–1968 (1980)

    Article  ADS  Google Scholar 

  62. T.S. Cheng, S.R. March, R.W. Pitz, J.A. Wehrmeyer, J.Y. Chen, Laser raman measurements of temperature and species concentration in swirling lifted hydrogen jet diffusion flames. Int. J. Hydrogen Energy 37, 7900–7911 (2012)

    Article  Google Scholar 

  63. P.M. Hughes, T. Parameswaran, R.J. Lacelle, in CARS Temperature Measurements in Flames in Industrial Burners, In Industrial Combustion Testing, ed. by C.E. Baukal Jr. (CRC Press, Boca Raton, 2010), pp. 289–311

    Google Scholar 

  64. J. Kiefer, J.W. Tröger, Z.S. Li, M. Aldén, Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Appl. Phys. B 103, 229–236 (2011)

    Google Scholar 

  65. G.D. Tejwani, F.E. Bircher, D.V. Van Dyke, G.P. McVay, C.D. Stewart, L.A. Langford, Space-shuttle main engine exhaust-plume spectroscopy. Spectroscopy 11, 31–45 (1996)

    Google Scholar 

  66. G.W. Loge, J.P. Singh, F.Y. Yueh, H. Zhang, Hydrocarbon fueled rocket engine health monitoring by laser induced breakdown spectroscopy. Final report for contract No. NAS 13-99002, STTR Phase 1, (Oct 27, 1999)

    Google Scholar 

  67. H. Zhang, F.Y. Yueh, J.P. Singh, and R.L. Cook, G.W. Loge, Laser-induced breakdown spectroscopy in a metal-seeded flame, in Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety, vol. 1, pp. 695–600

    Google Scholar 

  68. V.N. Rai, P.J. Singh, C. Winstead, F.Y. Yueh, R.L. Cook, Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume. AIAA J 41, 2192–2199 (2003)

    Article  ADS  Google Scholar 

  69. S.G. Buckkey, C.S. Baldwin, K. Kratzsch, LIBS system and method for engine exhaust monitoring, US patent # 7202948 Apr 10, 2007

    Google Scholar 

  70. M. Thomas, S. Deaconu, J. Lewis, E. Coy, Laser induced breakdown spectroscopy (libs) applied to reacting gases for mixture ratio measurement and detection of metallic species, in Presented at the JANNAF 54th Propulsion Meeting/3rd Liquid Propulsion Subcommittee/2nd Spacecraft Propulsion Subcommittee/5th Modeling and Simulation Subcommittee Joint Meeting, Denver, CO, 14–17 May 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yueh, F.Y., Tripathi, M.M., Singh, J.P. (2014). Combustion Applications of Laser-Induced Breakdown Spectroscopy. In: Musazzi, S., Perini, U. (eds) Laser-Induced Breakdown Spectroscopy. Springer Series in Optical Sciences, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45085-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45085-3_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45084-6

  • Online ISBN: 978-3-642-45085-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics