Advertisement

Applications of High Resolution Laser: Induced Breakdown Spectroscopy for Environmental and Biological Samples

  • Madhavi Z. MartinEmail author
  • Nicole Labbe
  • Rebekah J. Wagner
Chapter
  • 3.4k Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 182)

Abstract

This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

Keywords

Soil Organic Carbon Partial Less Square Partial Less Square Regression Tall Fescue Partial Less Square Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.V. Pakhomov, W. Nichols, J. Borysow, Appl. Spectrosc. 50, 880 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    A.S. Eppler, D.A. Cremers, D.D. Hickmott, M.J. Ferris, A.C. Koskelo, Appl. Spectrosc. 50, 1181 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Vadillo, S. Palanco, M.D. Romero, J.J. Laserna, Fresenius. J. Anal. Chem. 355, 909 (1996)Google Scholar
  4. 4.
    C.M. Davis, H.H. Telle, A.W. Williams, Fresnius. J. Anal. Chem. 355, 895 (1996)Google Scholar
  5. 5.
    D.A. Cremers, J.E. Barefield II, A.C. Koskelo, Appl. Spectrosc. 49, 857 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    K.Y. Yamamoto, D.A. Cremers, M.J. Ferris, L.E. Foster, Appl. Spectrosc. 50, 222 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    C. Geertsen, J.L. Lacour, P. Mauchien, L. Pierrard, Spectrochim. Acta Part B 51, 1403 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    K.J. Grant, G.L. Paul, J.A. O’Neill, Appl. Spectrosc. 45, 701 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    M.Z. Martin, M.D. Cheng, R.C. Martin, Aerosol Sci. Technol. 31(6), 409 (1999)CrossRefGoogle Scholar
  10. 10.
    M.Z. Martin, M.D. Cheng, Appl. Spectrosc. 54, 1279 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    R. Wisburn, I. Schechter, R. Niessner, H. Schroder, K.L. Kompa, Anal. Chem. 66, 2964 (1994)CrossRefGoogle Scholar
  12. 12.
    M.Z. Martin, S. Wullschleger, C.T. Garten Jr, A.V. Palumbo, J.G. Smith, J. Disper, Sci. Technol. 25(5), 689 (2004)Google Scholar
  13. 13.
    E.W. Stoffels, P. Van de Weijer, J. Van der Mullen, Spectrochim. Acta Part B 46, 1459 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Wachter, D.A. Cremers, Appl. Spectrosc. 41, 1042 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    J.E. Barefield II, D.A. Cremers, M.D. Ferran, in Abstracts 2nd International Mixed Waste Symposium, Baltimore, Maryland, 1993Google Scholar
  16. 16.
    ITU, in Institute of Transuranium Elements Annual Report, Report No. EUR 17296 EN, Joint Research Center, European Commission, Karlsruhe, Germany, 1996Google Scholar
  17. 17.
    M.Z. Martin, S. Allman, D.J. Brice, R.C. Martin, N.O. Andre, Spectrochim. Acta Part B 74–75, 177 (2012)CrossRefGoogle Scholar
  18. 18.
    N.F. Yang, N.S. Eash, J. Lee, M.Z. Madhavi, Soil Sci. 175(9), 447 (2010)CrossRefGoogle Scholar
  19. 19.
    M.Z. Martin, N. Labbé, N. André, S.D. Wullschleger, R.D. Harris, M.H. Ebinger, Soil Sci. Soc. Am. J. 74(1), 87 (Jan–Feb 2010)Google Scholar
  20. 20.
    N. Labbé, I.M. Swamidoss, N. André, M.Z. Martin, T.M. Young, T.G. Rials, Appl. Opts. 47(31), G158-G165 (Nov 1 2008)Google Scholar
  21. 21.
    M.Z. Martin, N. Labbe, T.G. Rials, S.D. Wullschleger, Spectrachim. Acta B 60(7–8), 1179 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    S.M. Clegg, E. Sklute, M. Darby Dyar, J.E. Barefield, R.C. Wiens, Spectrochim. Acta Part B 64(1), 79 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    F.C. De Lucia, Jr., J.L. Gottfried, C.A. Munson, A.W. Miziolek, Appl. Opt. 47(31), G112 (2008)Google Scholar
  24. 24.
    S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.) Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007)Google Scholar
  25. 25.
    P.J. Hanson, J.F. Weltzin, Sci. Total Environ. 262, 205 (2000)CrossRefGoogle Scholar
  26. 26.
    D.W. Johnson, R.B. Susfalk, H.L. Gholz, P.J. Hanson, J. Hydrol. 235, 183 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    J. Pastor, W.M. Post, Nature 334, 55 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    R.P. Neilson, G.A. King, R.L. DeVelice, J. Lenihan, D. Marks, J. Dolph, W. Campbell, G. Glick, Sensitivity of Ecological Landscapes to Global Climatic Change. US Environmental Protection Agency, EPA-600-3- 89-073, NTIS-PB-90-120-072-AS, Washington DC, USA, 1989Google Scholar
  29. 29.
    J.F. Weltzin, M.E. Loik, S. Schwinning, D.G. Williams, P.A. Fay, B.M. Haddad, J. Harte, T.E. Huxman, A.K. Knapp, G. Lin, W.T. Pockman, M.R. Shaw, E.E. Small, M.D. Smith, S.D. Smith, D.T. Tissue, J.C. Zak, Bioscience 53, 941 (2003)CrossRefGoogle Scholar
  30. 30.
    Ph. Ciais, M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, N. Buchmann, Chr. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grünwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, R. Valentini, Nature 437, 529 (2005)Google Scholar
  31. 31.
    P.A. Fay, D.M. Kaufman, J.B. Nippert, J.D. Carlisle, C.W. Harper, Glob. Change Biol. 14, 1600 (2008)CrossRefGoogle Scholar
  32. 32.
    G. Piovesan, F. Biondi, A. Di Filippo, A. Alessandrini, M. Maugeri, Glob. Change Biol. 14, 1 (2008)CrossRefGoogle Scholar
  33. 33.
    K. Paustian, O. Andren, H.H. Janzen, R. Lal, P. Smith, G. Tian, H. Tiessen, M. van Noordwijk, P.L. Woomer, Soil Use Manage. 13, 230 (1997)CrossRefGoogle Scholar
  34. 34.
    R.T. Conant, K. Paustian, E.T. Elliot, Ecol. Appl. 11, 343 (2001)CrossRefGoogle Scholar
  35. 35.
    R. Lal, Science 304, 1623–1627 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    T.O. West, C.C. Brandt, B.S. Wilson, C.M. Hellwinckel, D.D. Tyler, G. Marland, D.G. De La Torre Ugarte, J.A. Larson, R.G. Nelson, Soil Sci. Soc. Am. J. 72, 285–294 (2008)CrossRefGoogle Scholar
  37. 37.
    A.M. Thomson, R.C. Izaurralde, S.J. Smith, L.E. Clarke, Global Environ. Change 19, 192 (2008)CrossRefGoogle Scholar
  38. 38.
    A.V. Palumbo, S. Fisher, M. Martin, Z. Yang, J. Tarver, S.D. Wullschleger, Environ. Manage. 33(1), S518 (2004)Google Scholar
  39. 39.
    M.Z. Martin, S.D. Wullschleger, C.T. Garten Jr., Anthony V. Palumbo, Laser-induced Breakdown Spectroscopy Chapter 15, ed. by J.P. Singh, S.N. Thakur (Elesvier Science B.V., Amsterdam, 2007), pp. 341–351Google Scholar
  40. 40.
    M. Martin, S. Wullschleger, C. Garten Jr, A. Palumbo, Appl. Opts. 42(12), 2072 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    M.H. Ebinger, D.A. Cremers, D.D. Breshears, P.J. Unkefer, S.A. Kammerdiener, M.J. Ferris, in 1 st National Conference on Carbon Sequestration, May 14–17 (2001)Google Scholar
  42. 42.
    M.Z. Martin, N. Labbé, N. André, S.D. Wullschleger, R.D. Harris, M.H. Ebinger, Soil Sci. Soc. Am. J. 74(1), 87–93 (Jan–Feb 2010)Google Scholar
  43. 43.
    F.A. Nicholson, S.R. Smith, B.J. Alloway, C. Carlton-Smith, B.J. Chambers, Sci. Total Environ. 311, 205 (2003)CrossRefGoogle Scholar
  44. 44.
    B. Krasnodebska-Ostrega, H. Emons, J. Golimowski, Fresenius J. Anal. Chem. 371, 385 (2001)Google Scholar
  45. 45.
    A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tuderan, M. Winter, U. Kutschera, T. Baumert, Appl. Pys. B 77(4), 391 (2003)Google Scholar
  46. 46.
    M.Z. Martin, N. Labbe, T.G. Rials, S.D. Wullschleger, Spectrochim. Acta Part B 62(12), 1426 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    O. Samek, J. Lambert, R. Hergenroder, M. Liska, J. Kaiser, K. Novatny, S. Kukhlevsky, Laser Phys. Lett. 3(2), 21 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    S. Krizkova, P. Ryant, O. Krystofova, V. Adam, M. Galiova, M. Beklova, P. Babula, J. Kaiser, K. Novotny, M. Liska, R. Malina, J. Zehnalek, J. Hubalek, L. Havel, R. Kizek, Sensors 8, 445 (2008)CrossRefGoogle Scholar
  49. 49.
    M. Galiova, J. Kaiser, K. Novotny, O. Samek, L. Reale, R. Malina, K. Palenikova, M. Liska, V. Kanicky, V. Otruba, A. Poma, A. Tucci, Spectrochim. Acta Part B 62, 1597 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    J. Le Meur, D. Menut, P. Wodling, L. Salmon, P. Thro, S. Chevillard, N. Ugolin, Spectrochim. Acta Part B 63, 465 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    L. Trevizan, D. Santos, R. Samad, N. Vieira, C. Nomura, L. Nunes, I. Rufini, F. Krug, Spectrochim. Acta Part B 63, 1151 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    L. Trevizan, D. Santos, R. Samad, N. Vieira, L. Nunes, I. Rufini, F. Krug, Spectrochim. Acta Part B 64, 369 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    M. Galiova, J. Kaiser, K. Novotny, J. Novotny, T. Vaculovic, M. Liska, R. Malina, K. Stejskal, V. Adam, R. Kizek, Appl. Phys. 93, 917–922 (2008)CrossRefGoogle Scholar
  54. 54.
    J. Kaiser, M. Galiova, K. Novotny, R. Cervenka, L. Reale, K. Novotny, J. Novotny, M. Liska, O. Samek, A. Hrdlicka, K. Stejskal, V. Adam, R. Kizek, Spectrochim. Acta Part B 64, 67 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    M.R. Martelli, C. Barron, P. Delaporte, G. Viennois, X. Rouau, A. Sadoudi, J. Cereal Sci. 49, 354–362 (2009)CrossRefGoogle Scholar
  56. 56.
    M.Z Martin, A.J. Stewart, K.D. Gwinn, J.C. Waller, Appl. Opts. 49(13), C161–C167 (2010)Google Scholar
  57. 57.
    S. Morel, N. Leone, P. Adam, J. Amouroux, Appl. Opt. 42(30), 6184 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    A. Samuels, F. DeLucia, K. McNesby, A. Miziolek, Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential. Appl. Opt. 42(30), 6205 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    D. Merdes, J. Suhan, J. Keay, D. Hadka, W. Bradley, Spectroscopy 22(4), 28 (2007)Google Scholar
  60. 60.
    A. Uhl, K. Loebe, L. Kreuchwig, Spectrochim. Acta Part B 56, 795 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    T.M. Moskal, D.W. Hahn, Appl. Spectrosc. 56(10), 1337 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    B.A. Gething, J.J. Janowiak, R.H. Falk, Forest prod. J. 59(3), 67 (2009)Google Scholar
  63. 63.
    R.J. Wagner, M.W. Kaye, M.D. Abrams, P.J. Hanson, M. Martin, Tree-Ring Res. 68(1), 17 (2012)CrossRefGoogle Scholar
  64. 64.
    G. Tuskan, D. West, H.D. Bradshaw, D. Neale, M. Sewell, N. Wheeler, B. MeGraw, K. Jech, A. Wislogel, R. Evans, C. Elam, M. Davis, R. Dinus, Appl. Biochem. Biotechnol. 77–79, 55 (1999)CrossRefGoogle Scholar
  65. 65.
    H. Martens, T. Naes, Multivariate Calibration, 2nd edn. (Wiley, New York, 1991)Google Scholar
  66. 66.
    K.H. Esbensen, Multivariate Data Analysis in Pratice, vol. 16 (CAMO Process AS, Norway, 2002)Google Scholar
  67. 67.
    M.Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S.D. Wullschleger, A.A. Vass, Spectrochim. Acta Part B 62(12), 1426 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    M.M. Tripathi, K.E. Eseller, F.-Y. Yueh, J.P. Singh, Spectrochim. Acta Part B 64, 1212 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    S.M. Clegg, E. Sklute, M. Darby Dyar, J.E. Barefield, R.C. Wiens, Spectrochim. Acta Part B: At. Spectrosc. 64(1), 79 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    J.L. Gottfried., F.C. De Lucia Jr., A.W. Miziolek, Spectrochim. Acta Part B: At. Spectrosc. 64(10), 1009 (2009)Google Scholar
  71. 71.
    J.W.B. Braga, L.C. Trevizan, L.C. Nunes, I.A. Rufini, D. Santos Jr., F.J. Krug, Spectrochim. Acta Part B: At. Spectrosc. 65(1), 66 (2010)Google Scholar
  72. 72.
    B. Bousquet, J.-B. Sirven, L. Canioni, Spectrochim. Acta Part B 62(12), 1582 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    S.V. Romanenko, A.G. Stromberg, Anal. Chim. Acta 581, 343 (2007)CrossRefGoogle Scholar
  74. 74.
    J. Shao, J. Am. Stat. Assoc. 88(422), 486 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Madhavi Z. Martin
    • 1
    Email author
  • Nicole Labbe
    • 2
  • Rebekah J. Wagner
    • 3
  1. 1.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Center for Renewable Carbon, Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleUSA
  3. 3.School of Forest Resources, Forest Resources BuildingPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations