Advertisement

Monotonicity of SISO Fuzzy Relational Inference Mechanism with Yager’s Class of Fuzzy Implications

  • Sayantan Mandal
  • Balasubramaniam Jayaram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Monotonicity of a Fuzzy Relational Inference (FRI) mechanism has been studied in the literature with implicative form of a rule base where the implication comes from a residuated lattice structure. Here we show monotonicity of an FRI with Yager’s class of fuzzy implications which do not form a residuated lattice structure on [0,1].

Keywords

monotone rule base f-implications fuzzy relational inference 

References

  1. 1.
    Baczyński, M., Jayaram, B.: Fuzzy Implications. STUDFUZZ, vol. 231, pp. 1–35. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bandler, W., Kohout, L.J.: Semantics of implication operators and fuzzy relational products. Internat. J. Man-Mach. Stud. 12, 89–116 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Broekhoven, E.V., Baets, B.D.: Only Smooth Rule Bases Can Generate Monotone Mamdani-Assilian Models Under Center-of-Gravity Defuzzification. IEEE Transactions on Fuzzy Systems 17, 1157–1174 (2009)CrossRefGoogle Scholar
  4. 4.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic contoller. Int. J. Man-Machine Studies 7, 1–13 (1975)CrossRefzbMATHGoogle Scholar
  5. 5.
    Mandal, S., Jayaram, B.: Bandler-Kohout Subproduct with Yagers classes of Fuzzy Implications. IEEE Trans. on Fuzzy Syst. (accepted 2013)Google Scholar
  6. 6.
    Pedrycz, W.: Application of fuzzy relational equations for methods of reasoning in presence of fuzzy data. Fuzzy Sets and Syst. 16, 163–175 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Roychowdhury, S., Pedrycz, W.: A survey of defuzzification strategies. International Journal of Intelligent Systems 16, 679–695 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Štěpnička, M., De Baets, B.: Monotonicity of implicative fuzzy models. In: IEEE International Conference on Fuzzy Systems, pp. 1–7 (2010)Google Scholar
  9. 9.
    Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167, 193–216 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Syst. Man and Cyber. SMC-3(1), 28–44 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sayantan Mandal
    • 1
  • Balasubramaniam Jayaram
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology HyderabadYeddumailaramIndia

Personalised recommendations