The Fuzzy Parametrized Model for Classifying Blocks in the Non-binary Motion Mask

  • Dmitry A. Matsypaev
  • Andrey G. Bronevich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


The motion detection in video is considered. We break non-binary motion mask on blocks and calculate a certain statistics for each block. Then we use prior information about statistics distribution to classify blocks on background and foreground. The estimation framework for classification confidence is presented.


non-binary motion mask block representation fuzzy model imprecise probabilities 


  1. 1.
    Bouwmans, T.: Recent advanced statistical background modelling for foreground detection: a systematic survey. Recent Patents on Computer Science 4(3), 147–176 (2011)Google Scholar
  2. 2.
    Bradski, G., Kaehler, A.: Learning OpenCV. Computer vision with the OpenCV library. O’Reilly Media, Inc., Sebastopol (2008)Google Scholar
  3. 3.
    Cross, V.V., Sudkamp, T.A.: Similarity and compatibility in fuzzy set theory: assessment and applications. Physica-Verlag GmbH & Co., Heidelberg (2002)Google Scholar
  4. 4.
    Guaourova, A., Kamath, C., Cheung, S.C.: Block matching for object tracking. Technical report, Lawrence Livermore National Laboratory (2003)Google Scholar
  5. 5.
    Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: Proc. of IEEE Workshop on Change Detection, pp. 38–43 (2012)Google Scholar
  6. 6.
    Klir, G.J.: Uncertainty and information. Foundations of generalized information theory. Jonh Wiley & Sons, Inc., New York (2006)Google Scholar
  7. 7.
    Narayana, M., Hanson, A.R., Learned-Miller, E.G.: Background modelling using adaptive pixelwise kernel variances in a hybrid feature space. In: CVPR, pp. 2104–2111. IEEE (2012)Google Scholar
  8. 8.
    Park, J., Tabb, A., Kak, A.C.: Hierarchical data structure for real time background subtraction. In: IEEE International Conference on Image Processing, pp. 1849–1852. IEEE, Atlanta (2006)Google Scholar
  9. 9.
    Richardson, I.E.G.: H.264 and MPEG-4 video compression: video coding for next generation multimedia. Jonh Wiley & Sons Ltd., Chischester (2003)Google Scholar
  10. 10.
    Van Droogenbroeck, M., Paquot, O.: Background subtraction: experiments and improvements for ViBe. In: Proc. of 2012 IEEE Computer Society Conference, pp. 32–37. Providence (2012)Google Scholar
  11. 11.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: International Conference Pattern Recognition, vol. 2, pp. 28–31. ICPR, Cambridge (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dmitry A. Matsypaev
    • 1
  • Andrey G. Bronevich
    • 2
  1. 1.Southern Federal University,Taganrog Institute of Technology, TaganrogRussia
  2. 2.National Research University ”Higher School of Economics”, MoscowRussia

Personalised recommendations