Advertisement

On the Role of Compensatory Operators in Fuzzy Result Merging for Metasearch

  • Arijit De
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

A key metasearch engine task is result merging of search results from multiple search engines in response to a user query. The problem of result merging has been widely studied as a multi-criteria decision making model (MCDM). While many MCDM techniques have been employed to create experimental models for result merging, the most notable have used fuzzy aggregation operators such as the OWA operators and its extensions and variations. In this work we study the role of applying fuzzy algebraic t-norms, s-norms and compensatory operators in fuzzy result merging for metasearch. Our results will demonstrate the superiority of compensatory operators over t-norm aggregation functions in the context of result merging for metasearch.

Keywords

Information Retrieval Metasearch Engines Fuzzy Sets Fuzzy Aggregation Operators 

References

  1. 1.
    Aslam, J., Montague, M.: Models for metasearch. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2001), New Orleans, LA, USA, September 1-6, pp. 276–284. ACM Press, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Borda, J.C.: Memoire sur les elections au scrutiny. Histoire de l’Academie Royale des Sciences, Paris (1781)Google Scholar
  3. 3.
    De, A., Diaz, E.D., Raghavan, V.V.: On Fuzzy Result Merging for Metasearch. In: IEEE International Conference on Fuzzy Systems, London, United Kingdom. IEEE Press (July 2007)Google Scholar
  4. 4.
    De, A.: Fuzzy result merging models for metasearch, A Dissertation. University of Louisiana Press (2006)Google Scholar
  5. 5.
    Diaz, E.D., De, A., Raghavan, V.V.: A comprehensive OWA-based framework for result merging in metasearch. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 193–201. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Fox, E.A., Shaw, J.A.: Combination of multiple searches: Part 2. In: Proceedings of the 2nd Text Retrieval Conference (TREC-2), Gaithersburg, MD, August 31-September 2, pp. 243–252. US Government Printing Office, Washington DC (1993)Google Scholar
  7. 7.
    Fox, E.A., Koushik, M.P., Shaw, J.A., Modlin, R., Rao, D.: Combination of multiple searches: Part 1. In: Proceedings of the 1st Text Retrieval Conference (TREC-1), Gaithersburg, MD, USA, November 4-6, pp. 319–328. US Government Printing Office, Washington DC (1992)Google Scholar
  8. 8.
    Hersh, W., Buckley, C., Leone, T.J., Hickam, D.: OHSUMED: An interactive retrieval evaluation and new large test collection for research. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 192–201. ACM/Springer, New York, NY (1994)Google Scholar
  9. 9.
    Liu, T., Xu, J., Qin, T., Xiong, W., Li, H.: LETOR 2007: Benchmark dataset for re-search on learning to rank for information retrieval. In: LR4IR 2007, in Conjunction with SIGIR 2007 (2007)Google Scholar
  10. 10.
    Turksen, I.B.: Interval-valued fuzzy sets and ’compensatory AND’. Fuzzy Sets and Systems 51, 295–307 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. Fuzzy Sets and Systems 2, 243–260 (1983)Google Scholar
  12. 12.
    Yager, R.R.: Quantifier guided Aggregating using OWA operators. International Journal of Intelligent Systems 1, 49–73 (1996)CrossRefGoogle Scholar
  13. 13.
    Yager, R.R., Kreinovich, V.: On how to merge sorted lists coming from different web search tools. Soft Computing Research Journal 3(1), 83–88 (1999)CrossRefGoogle Scholar
  14. 14.
    Yager, R.R., Rybalov, A.: Full reinforcement operators in aggregation techniques. IEEE Transactions on Systems, Man and Cybernetics 28, 757–769 (1998)CrossRefGoogle Scholar
  15. 15.
    Zimmermann, H.-J., Zysno, P.: Latent connectives in human decision making. Fuzzy Sets and Systems 4, 37–51 (1980)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bollmann, P., Raghavan, V.V., Jung, G.S., Shu, L.C.: On probabilistic notions of precision as a function of recall. In: Information Processing and Management, pp. 291–315. Pergamon Press, Tarrytown (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arijit De
    • 1
  1. 1.Tata Consultancy ServicesMumbaiIndia

Personalised recommendations