Bone Contour Tracing in Digital X-ray Images Based on Adaptive Thresholding

  • Oishila Bandyopadhyay
  • Arindam Biswas
  • Bhabatosh Chanda
  • Bhargab B. Bhattacharya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

An orthopedic X-ray captures bone images along with surrounding flesh and muscle components. Segmentation of the bone component with a sharp contour is a challenging task as the bone and flesh regions often have pixels with overlapping intensity range. In this paper, we propose a new technique of contour extraction by integrating an entropy-based segmentation approach with adaptive thresholding. The method eliminates the shortcomings of earlier derivative or deformable model based approaches, and can be fully automated. Experiments with several digital X-ray images reveal encouraging results especially for long-bone X-ray images.

Keywords

Medical Imaging Bone X-ray Entropy Standard Deviation Adaptive Thresholding Tracing 

References

  1. 1.
    Eksi, Z., Dandil, E., Cakiroglu, M.: Computer-aided bone fracture detection. In: Proceedings of Signal Processing and Communications Applications, pp. 1–4 (2012)Google Scholar
  2. 2.
    Donnelley, M., Knowles, G.: Automated bone fracture detection. In: Proceedinds of SPIE, Medical Imaging: Image Processing, vol. 5747, p. 955 (2005)Google Scholar
  3. 3.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.N., Guy, P.: Automatic bone localization and fracture detection from volumetric ultrasound images using 3-d local phase features. Ultrasound Med. Biol. (1), 128–144 (2012)Google Scholar
  4. 4.
    Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annual Review of Biomedical Engineering 2, 315–337 (2000)CrossRefGoogle Scholar
  5. 5.
    Feng, D.: Segmentation of Bone Structure in X-ray Images. PhD thesis, School of Computing, National University of Singapure (2006)Google Scholar
  6. 6.
    Goshtasby, A., Turner, D.A.: Segmentation of cardiac cine mr images for extraction of right and left ventricular chambers. IEEE Transactions on Medical Imaging, 56–64 (1995)Google Scholar
  7. 7.
    Scepanovic, D., Kirshtein, J., Jain, A.K., Taylor, R.H.: Fast algorithm for probabilistic bone edge detection (FAPBED), vol. 5747 (2005)Google Scholar
  8. 8.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Computer Vision, 321–331 (1987)Google Scholar
  9. 9.
    Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for locating structures in medical images. In: Barrett, H.H., Gmitro, A.F. (eds.) IPMI 1993. LNCS, vol. 687, pp. 33–47. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Bandyopadhyay, O., Chanda, B., Bhattacharya, B.B.: Entropy-based automatic segmentation of bones in digital x-ray images. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds.) PReMI 2011. LNCS, vol. 6744, pp. 122–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Yang, J., Staib, L.H., Duncan, J.S.: Neighbourhood-constrained segmentation with level based 3-d deformable models. IEEE Transaction on Medical Imaging 23(8), 940–948 (2004)CrossRefGoogle Scholar
  12. 12.
    Yan, C., Sang, N., Zhang, T.: Local entropy-based transition region extraction and thresholding. Pattern Recognition Letters, 2935–2941 (2003)Google Scholar
  13. 13.
    Biswas, A., Khara, S., Bhowmik, P., Bhattacharya, B.B.: Extraction of region of interest from face images using cellular analysis. Compute, 1–8 (2008)Google Scholar
  14. 14.
    Hao, J., Shen, Y., Xu, H., Zou, J.: A region entropy based objective evaluation method for image segmentation. In: IEEE International Conference on Instrumentation and Measurement Technology, pp. 373–377 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oishila Bandyopadhyay
    • 1
  • Arindam Biswas
    • 2
  • Bhabatosh Chanda
    • 3
  • Bhargab B. Bhattacharya
    • 3
  1. 1.Department of CSECamellia Institute of TechnologyKolkataIndia
  2. 2.Department of ITBengal Engineering and Science UniversityHowrahIndia
  3. 3.Center for Soft Computing ResearchIndian Statistical InstituteKolkataIndia

Personalised recommendations