Static Summarization of Video Scenes Based on Minimal Spanning Tree

  • Partha Pratim Mohanta
  • Sudipta Chowdhury
  • Arnab Roy
  • Sanjoy Kumar Saha
  • Bhabatosh Chanda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

The common practice for providing a static summarized view of a video is to create a storyboard. Storyboard is the chronological arrangement of the representative frames. Shot level storyboard suffers from redundancy as in a scene constituting shots normally repeat. Also the size of such storyboard is a constraint for many application. In this work we have considered scene as the more meaningful unit. We propose a state-based scene segmentation algorithm and also a minimal spanning tree based novel method to select the representative frames for the scenes. Storyboard consisting of scene level representative frames are much more compact than shot level storyboard. Moreover, scene being the semantic unit, flow of semantic content of the video data is well preserved. Experimental result confirms the claim.

References

  1. 1.
    Cernekova, Z., Pitas, I., Nikou, C.: Information theory-based shot cut/fade detection and video summarization. IEEE Trans. on CSVT 16(1), 82–91 (2006)Google Scholar
  2. 2.
    Mohanta, P.P., Saha, S.K., Chanda, B.: A model-based shot boundary detection technique using frame transition parameters. IEEE Transactions on Multimedia 14(1), 223–233 (2012)CrossRefGoogle Scholar
  3. 3.
    Mohanta, P.P., Saha, S.K., Chanda, B.: A heuristic algorithm for video scene detection using shot cluster sequence analysis. In: Proc. ICVGIP, India (2010)Google Scholar
  4. 4.
    Rasheed, Z., Shah, M.: Detection and representation of scenes in video. IEEE Trans. on Multimedia 7(6), 1097–1105 (2005)CrossRefGoogle Scholar
  5. 5.
    Zhao, Y.J., Wang, T.: Scene segmentation and categorization using n-cuts. In: Proc. CVPR, pp. 343–348 (2007)Google Scholar
  6. 6.
    Tonomura, Y., Akutsu, A., Otsugi, K., Sadakata, T.: Videomap and videospaceicon: Tools for automatizing video content. In: Proc. ACM INTERCHI, pp. 131–141 (1993)Google Scholar
  7. 7.
    Rui, Y., Huang, T.S., Mehrotra, S.: Exploring video structures beyond the shots. In: Proc. IEEE Conf. on Multimedia Computing and Systems, pp. 237–240 (1998)Google Scholar
  8. 8.
    Mohanta, P.P., Saha, S.K., Chanda, B.: A novel technique for size constrained video storyboard generation using statistical run test and spanning tree. International Journal of Image and Graphics 13(1), 1–24 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Macer, P.J., Thomas, P.J.: Video storyboards: Summarizing video sequences for indexing and searching of video databases. In: Proc. IEE Colloquium on Intelligent Image Databases, pp. 2/1–2/5 (1996)Google Scholar
  10. 10.
    Cayllahua-Cahuina, E.J.Y., Camara-Chavez, G., Menotti, D.: Video summarization with automatic shot detection using color histograms. In: Proc. IPCV 2012, Las Vegas, USA (2012)Google Scholar
  11. 11.
    Rui, Y., Huang, T.S., Mehrotra, S.: Constructing table-of-content for video. ACM Multimedia Systems 7(5), 359–368 (1999)CrossRefGoogle Scholar
  12. 12.
    Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 31(4), 591–606 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Partha Pratim Mohanta
    • 1
  • Sudipta Chowdhury
    • 2
  • Arnab Roy
    • 2
  • Sanjoy Kumar Saha
    • 2
  • Bhabatosh Chanda
    • 1
  1. 1.ECS UnitIndian Statistical InstitueKolkataIndia
  2. 2.CSE Dept.Jadavpur UniversityKolkataIndia

Personalised recommendations