A Bi-level IHS Transform for Fusing Panchromatic and Multispectral Images

  • Navaneeth K. Ramakrishnan
  • Philomina Simon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


In this paper, a new method for Panchromatic and Multispectral satellite image fusion is proposed. The major challenge of a fusion algorithm is to improve the spatial and spectral qualities of the fused image. But the spatial and spectral qualities are inversely proportional; we cannot improve either quality above particular range without losing visual quality, and most of the current methods do not take into consideration about visual quality. The proposed method tries to improve the spatial and visual quality with reduced spectral distortion using a Bi-Level Intensity Hue Saturation transform. Proposed method is rigorously tested over QuickBird and IKONOS satellite images and the experimental results shows that our method produces high visual quality fused images with a good spatial and spectral quality levels compared with existing methods.


Bi-Level IHS Image Fusion QuickBird IKONOS Visual Quality Remote Sensing 


  1. 1.
    Haydan, R., Dalke, G.W., Henkel, J., Bare, J.E.: Applications of the IHS color transform to the processing of multisensor data and image enhancement. In: Proceedings of the International Symposium of Remote Sensing of Arid and Semi-arid Lands, Cairo, Egypt, pp. 599–616 (1982)Google Scholar
  2. 2.
    Eshtehari, A., Ebadi, H.: Image Fusion of Landsat ETM+ and Spot Satellite Images Using IHS, Brovey and PCA. Toosi Univ. Technol., Tehran (2008)Google Scholar
  3. 3.
    da Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)CrossRefGoogle Scholar
  4. 4.
    Shah, V.P., Younan, N.H., King, R.L.: An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets. IEEE Transactions on Geoscience and Remote Sensing 46(5), 1323–1335 (2008)CrossRefGoogle Scholar
  5. 5.
    Mahyari, A.G., Yazdi, M.: Panchromatic and Multispectral Image Fusion Based on Maximization of Both Spectral and Spatial Similarities. IEEE Transactions on Geoscience and Remote Sensing 49(6) (June 2011)Google Scholar
  6. 6.
    Li, D.: Fusion of Multispectral Remote Sensing Image and High Resolution Spatial Panchromatic image Based on NSCT and IHS. In: Second International Conference on Computer and Electrical Engineering (2009)Google Scholar
  7. 7.
    Kaplan, N.H., et al.: Fusion of multispectral and panchromatic images by combining bilateral filter and HIS transform. In: 20th European Signal Processing Conference (FUSIPCO 2012), Bucharest, Romania, August 27-31, pp. 2501–2505 (2012)Google Scholar
  8. 8.
    Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., Wittman, T.: An Adaptive IHS Pan-Sharpening Method. IEEE Transactions on Geoscience and Remote Sensing 7(4), 746–750 (2010)CrossRefGoogle Scholar
  9. 9.
    Choi, M., Kim, H., Cho, N.I., Kim, H.O.: An improved intensity-hue-saturation method for IKONOS image fusion. Korea Adv. Inst. Sci.Technol., Daejon, Korea. Tech. Rep. 06-9 (2008)Google Scholar
  10. 10.
    Choi, M.: A New Intensity-Hue-Saturation Fusion Approach to Image Fusion With a Tradeoff Parameter. IEEE Transactions on Geoscience and Remote Sensing 44(6), 1672–1682 (2006)CrossRefGoogle Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall (2009)Google Scholar
  12. 12.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  13. 13.
    Wald, L.: Data Fusion: Definitions and Architectures Fusion images of different spatial resolutions. Les Presses, EColedes Mines De Paris (2002)Google Scholar
  14. 14.
    Alperone, L., et al.: Comparison of pansharpening algorithms, Outcome of the 2006 GRS – S data Fusion contest. IEEE Trans. Geoscience and Remote Sensing 45(10), 3012–3021 (2007)CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Navaneeth K. Ramakrishnan
    • 1
  • Philomina Simon
    • 1
  1. 1.Department of Computer ScienceUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations