Local Morphological Pattern Spectrum Based Approach for Off-line Signature Verification

  • B. H. Shekar
  • R. K. Bharathi
  • Bharathi Pilar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

In this paper, we present a local morphological pattern spectrum based approach for off-line signature verification. The proposed approach has three major phases : Preprocessing, Feature extraction and Classification. In the feature extraction phase, the signature image is partitioned into eight equally sized vertical blocks and local morphological pattern spectra of each block is obtained. The spectrum thus obtained for each block is converted to normalised ten bin histogram and to form a feature vector of the signature. The Earth Movers Distance (EMD) measure is used for classification and the performance is measured through FAR/FRR metric. Experiments have been conducted on standard signature datasets namely CEDAR and GPDS-160, and MUKOS, a regional language (Kannada) dataset. The comparative study is also provided with the well known approaches to exhibit the performance of the proposed approach.

Keywords

Pattern spectra Earth Movers Distance Histogram matching Off-line signature verification 

References

  1. 1.
    Almazan, J., Fornes, A., Valveny, E.: A non-rigid feature extraction method for shape recognition. In: ICDAR, pp. 987–991. IEEE (2011)Google Scholar
  2. 2.
    Chen, S., Srihari, S.: Use of exterior contours and shape features in off-line signature verification. In: ICDAR, pp. 1280–1284 (2005)Google Scholar
  3. 3.
    Ferrer, M., Alonso, J., Travieso, C.: Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE-PAMI 27(6), 993–997 (2005)CrossRefGoogle Scholar
  4. 4.
    Kalera, M.K., Srihari, S., Xu, A.: Off-line signature verification and identification using distance statistics. IJPRAI 18, 228–232 (2004)Google Scholar
  5. 5.
    Kumar, R., Kundu, L., Chanda, B., Sharma, J.D.: A writer-independent off-line signature verification system based on signature morphology. In: ICIITM, pp. 261–265. ACM (2010)Google Scholar
  6. 6.
    Latecki, L.J., Li, Q.N., Bai, X., Liu, W.Y.: Skeletonization using ssm of the distance transform. In: IEEE-ICIP, vol. 5, pp. 349–352 (2007)Google Scholar
  7. 7.
    Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 701–716 (1989)CrossRefMATHGoogle Scholar
  8. 8.
    Pal, S., Alireza, A., Pal, U., Blumenstein, M.: Off-line signature identification using background and foreground information. In: ICDICTA, pp. 672–677. IEEE (2011)Google Scholar
  9. 9.
    Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Ruiz-Del-Solar, J., Devia, C., Loncomilla, P., Concha, F.: Offline signature verification using local interest points and descriptors. In: CIARP 2008, pp. 22–29 (2008)Google Scholar
  11. 11.
    Sabourin, R., Genest, G., Preteux, F.: Pattern spectrum as a local shape factor for off-line signature verification. In: 13th ICPR, pp. 43–48 (1996)Google Scholar
  12. 12.
    Shekar, B.H., Bharathi, R.K.: Eigen-signature: A robust and an efficient off-line signature verification algorithm. In: ICRTIT, pp. 134–138 (2011)Google Scholar
  13. 13.
    Shekar, B.H., Bharathi, R.K., Sharmilakumari, M.: Kernel eigen-signature: An offline signature verification technique based on kernel principal component analysis. In: EACV 2011 Bilateral Russian-Indian Scientific Workshop, pp. 37–44 (2011)Google Scholar
  14. 14.
    Vargas, J., Ferrer, M., Travieso, C., Alonso, J.: Off-line signature verification based on grey level information using texture features. PR 44(2), 375–385 (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. H. Shekar
    • 1
  • R. K. Bharathi
    • 2
  • Bharathi Pilar
    • 3
  1. 1.Department of Computer ScienceMangalore UniversityIndia
  2. 2.Department of Master of Computer ApplicationsS J College of EngineeringMysoreIndia
  3. 3.Department of Master of Computer ApplicationsAIMITMangaloreIndia

Personalised recommendations