KID: Kirsch Directional Features Based Image Descriptor

  • B. H. Shekar
  • K. Raghurama Holla
  • M. Sharmila Kumari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


In these days we have seen the development of local image descriptors for several computer vision applications in order to perform reliable matching and recognition. In this direction, we have made an attempt to propose a new local descriptor which uses the Kirsch’s four directional edge features to describe the neighbourhood of the interest point. The descriptor computation mainly consists of two stages: feature detection (identification of interest points) and feature description. In the first stage, the interest points are detected using Features from Accelerated Segment Test (FAST) algorithm where interest points are identified by comparing the pixels on a circle of fixed radius around the interest point. In the second stage, the directional features for horizontal, vertical, right-diagonal and left-diagonal directions are extracted from the local region around the interest point using Kirsch masks. In order to achieve rotation invariance, the descriptor window coordinates are rotated with respect to the dominant orientation of the interest point. Experiments have been conducted on several image datasets to reveal the suitability of the proposed approach for various image processing applications. A comparative analysis with the other well known descriptors such as SIFT, SURF and ORB is also provided to exhibit the performance of the proposed local image descriptor.


Interest point feature detection local descriptor object recognition 


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (June 2012)Google Scholar
  6. 6.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  7. 7.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. International Journal of Computer Vision 94, 335–360 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  10. 10.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II-506–II-513 (2004)Google Scholar
  11. 11.
    Lee, S.W.: Off-line recognition of totally unconstrained handwritten numerals using multilayer cluster neural network. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(6), 648–652 (1996)CrossRefGoogle Scholar
  12. 12.
    Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomputing 71(10-12), 1771–1787 (2008)CrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  15. 15.
    Pratt, W.: Digital image processing. John Wiley & Sons (2007)Google Scholar
  16. 16.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 105–119 (2010)CrossRefGoogle Scholar
  18. 18.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (November 2011)Google Scholar
  19. 19.
    Strecha, C., Bronstein, A., Bronstein, M., Fua, P.: LDAHash: Improved matching with smaller descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(1), 66–78 (2012)CrossRefGoogle Scholar
  20. 20.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends. Comput. Graph. Vis. 3(3), 177–280 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. H. Shekar
    • 1
  • K. Raghurama Holla
    • 1
  • M. Sharmila Kumari
    • 2
  1. 1.Department of Computer ScienceMangalore UniversityIndia
  2. 2.Department of Computer Science and EngineeringP.A. College of EngineeringMangaloreIndia

Personalised recommendations