A Complex Diffusion Driven Approach for Removing Data-Dependent Multiplicative Noise

  • P. Jidesh
  • A. A. Bini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


In this paper we propose a second-order non-linear PDE based on the complex diffusion function. The proposed method exhibits better restoration capability of ramp edges in comparison to other second-order methods discussed in the literature. The proposed model is designed for Gamma distributed multiplicative noise which commonly appears in Ultra Sound (US) and Synthetic Aperture Radar (SAR) images. The fidelity/reactive term augmented to the complex diffusive term is derived based on the Bayesian maximum a posteriori probability (MAP) estimator as detailed in Aubert and Ajol ([10]). The regularization parameter is selected based on the noise variance of the image and thus this adaptive method helps in restoring the images at various noise variances without manually fixing the parameter. The results shown in terms of both visual and qualitative measures demonstrate the capability of the model to restore images from their degraded observations.


Complex diffusion Multiplicative noise Regularization method Variational method 


  1. 1.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  2. 2.
    Rudin, L.I., Osher, S., Fehtami, E.: Nonlinear total variation based noise removal algorithms. Physica D. 68, 259–268 (1992)CrossRefGoogle Scholar
  3. 3.
    Weickert, J.: A Review of Nonlinear Diffusion Filtering Scale-Space, 3–28 (1997)Google Scholar
  4. 4.
    Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 11, 1260–1270 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rudin, L.I., Lions, P.L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–120. Springer, Berlin (2003)CrossRefGoogle Scholar
  6. 6.
    Gilboa, G., Sochen, N.A., Zeevi, Y.V.: Image Enhancement and Denoising by Complex Diffusion Processes. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1020–1036 (2004)CrossRefGoogle Scholar
  7. 7.
    Sun, Q., Hossack, J.A., Tang, J., Acton, S.T.: Speckle reducing anisotropic diffusion for 3D ultrasound images. Computerized Medical Imaging and Graphics 28, 461–470 (2004)CrossRefGoogle Scholar
  8. 8.
    Krissian, K., Kikinis, R., Westin, C.F., Vosburgh, K.: Speckle constrained filtering of ultrasound images. Proceedings of IEEE Comput. Vis. Pattern Recogn. (CVPR), 547–552 (2005)Google Scholar
  9. 9.
    Krissian, K., Westin, C.F., Kikinis, R., Vosburgh, K.G.: Oriented speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 16, 1412–1424 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Aubertt, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM Journal on Applied Mathematics 68, 925–946 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huang, M., Ng, M.K., Wen, Y.: A New Total Variation Method for Multiplicative Noise Removal. SIAM J. Imaging Sciences 2, 22–40 (2009)MathSciNetGoogle Scholar
  12. 12.
    Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian Images by Split Bregman Techniques. J. Visual Communication and Image Representation 21, 193–199 (2010)CrossRefGoogle Scholar
  13. 13.
    Huang, L., Xiao, L., Wei, Z.-H.: Multiplicative Noise Removal via a Novel Variational Model. EURASIP Journal on Image and Video Processing 2, 1–16 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Jidesh
    • 1
  • A. A. Bini
    • 2
  1. 1.Department of Mathematical and Computational SciencesNational Institute of TechnologyIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyIndia

Personalised recommendations