Scalable Knowledge Discovery in Complex Data with Pattern Structures

  • Sergei O. Kuznetsov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


Pattern structures propose a direct way to knowledge discovery in data with structure, such as logical formulas, graphs, strings, tuples of numerical intervals, etc., by defining closed descriptions and discovery tools build upon them: automatic construction of taxonomies, association rules and classifiers. A combination of lazy evaluation with projections of initial data, randomization and parallelization suggest efficient approach which is scalable to big data.


  1. 1.
    Arimura, H., Uno, T.: Polynomial-Delay and Polynomial-Space Algorithms for Mining Closed Sequences, Graphs, and Pictures in Accessible Set Systems. In: Proc. SDM, pp. 1087–1098 (2009)Google Scholar
  2. 2.
    Babin, M.A., Kuznetsov, S.O.: Enumeration Minimal Hypotheses and Dualizing Monotone Boolean Functions on Lattices. In: Jäschke, R. (ed.) ICFCA 2011. LNCS (LNAI), vol. 6628, pp. 42–48. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Babin, M.A., Kuznetsov, S.O.: Computing Premises of a Minimal Cover of Functional Depedencies is Intractable. Discr. Appl. Math. 161(6), 742–749 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baixeries, J., Kaytoue, M., Napoli, A.: Computing Functional Dependencies with Pattern Structures. In: Proc. 9th International Conference on Concept Lattices and their Applications (CLA 2012), Malaga (2012)Google Scholar
  5. 5.
    Birkhoff, B.: Lattice Theory. ACM (1991)Google Scholar
  6. 6.
    Buzmakov, A.V., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A.: On Projections of Sequential Pattern Structures with an Application on Care Trajectories. In: Proc. 10th International Conference on Concept Lattices and their Applications (CLA 2013), La Rochelle (2013)Google Scholar
  7. 7.
    Chaudron, L., Maille, N.: Generalized Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 357–370. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Coulet, A., Domenach, F., Kaytoue, M., Napoli, A.: Using pattern structures for analyzing ontology-based annotations of biomedical data. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp. 76–91. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Distel, F., Sertkaya, B.: On the Complexity of Enumerating Pseudo-intents. Discrete Applied Mathematics 159(6), 450–466 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Férré, S., Ridoux, O.: A Logical Generalization of Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 371–384. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Férré, S., King, R.D.: Finding Motifs in Protein Secondary Structure for Use in Function Prediction. Journal of Computational Biology 13(3), 719–731 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Finn, V.K.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki i Tekhniki, Seriya Informatika 15, 54–101 (1991) (in Russian)Google Scholar
  13. 13.
    Galitsky, B.A., Kuznetsov, S.O., Samokhin, M.V.: Analyzing Conflicts with Concept-Based Learning. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 307–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Galitsky, B.A., Kuznetsov, S.O., Usikov, D.: Parse Thicket Representation for Multi-sentence Search. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS 2013. LNCS, vol. 7735, pp. 153–172. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Garriga, G., Khardon, R., De Raedt, L.: Mining Closed Patterns in Relational, Graph and Network Data. Annals of Mathematics and Artificial Intelligence (2012)Google Scholar
  19. 19.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de donnees binaires. Math. Sci. Humaines 95, 5–8 (1986)MathSciNetGoogle Scholar
  20. 20.
    Hullermeier, E.: Case-Based Approximate Reasoning. Springer (2007)Google Scholar
  21. 21.
    Kautz, H.A., Kearns, M.J., Selman, B.: Reasoning with characteristic models. In: Proc. AAAI 1993, pp. 1–14 (1993)Google Scholar
  22. 22.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kuznetsov, S.O.: Stability as an Estimate of the Degree of Substantiation of Hypotheses on the Basis of Operational Similarity. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2 24(12), 21–29 (1990)Google Scholar
  24. 24.
    Kuznetsov, S.O.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, Ser. Informatika 15, 17–50 (1991) (in Russian)Google Scholar
  25. 25.
    Kuznetsov, S.O.: Mathematical aspects of concept analysis. J. Math. Sci. 80(2), 1654–1698 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kuznetsov, S.O.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Kuznetsov, S.O.: Complexity of Learning in Concept Lattices from Positive and Negative Examples. Discr. Appl. Math. 142, 111–125 (2004)CrossRefzbMATHGoogle Scholar
  28. 28.
    Kuznetsov, S.O.: Computing Graph-Based Lattices from Smallest Projections. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds.) KONT 2007 and KPP 2007. LNCS (LNAI), vol. 6581, pp. 35–47. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, S.O., Obiedkov, S.A.: Some Decision and Counting Problems of the Duquenne-Guigues Basis of Implications. Discrete Applied Mathematics 156(11), 1994–2003 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kuznetsov, S.O., Samokhin, M.V.: Learning Closed Sets of Labeled Graphs for Chemical Applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Kuznetsov, S.O., Revenko, A.: Finding Errors in Data Tables: An FCA-based Approach. Annals of Mathematics and Artificial Intelligence (2013)Google Scholar
  32. 32.
    Liquiere, M., Sallantin, J.: Structural Machine Learning with Galois Lattice and Graphs. In: Proc. ICML 1998 (1998)Google Scholar
  33. 33.
    Luxenburger, M.: Implications partielle dans un contexte. Math. Sci. Hum (1991)Google Scholar
  34. 34.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Minining of Association Rules Based on Using Closed Itemset Lattices. J. Inf. Systems 24, 25–46 (1999)CrossRefGoogle Scholar
  35. 35.
    Ryssel, U., Distel, F., Borchmann, D.: Fast computation of proper premises. In: Proc. CLA 2011 (2011)Google Scholar
  36. 36.
    Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: Proc. KDD 2003, pp. 286–295. ACM Press, New York (2003)Google Scholar
  37. 37.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Approach. Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergei O. Kuznetsov
    • 1
  1. 1.School of Applied Mathematics and Information ScienceNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations