On the Use of Monogenic Scale Space for Efficient Face Representation and Recognition

  • M. Sharmila Kumari
  • B. H. Shekar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


In this paper, we present a novel monogenic scale space based Principal Component Analysis (PCA) method by integrating the Reisz transform of face images at different scales and the PCA method for face representation and recognition. The Reisz transform captures desirable facial features characterized by local phase information and local energy at different scales in order to cope with the variations due to illumination and facial pose changes. The PCA method is then employed to reduce the dimension of the feature vectors and hence for efficient face representation and recognition. The feasibility of the proposed monogenic scale space based method integrated with PCA has been successfully tested on many standard face databases such as AT&T and YALE face databases. The recognition accuracy of the proposed approach is compared with the other well known face recognition approaches namely the PCA method, the kernel PCA method and the Gabor wavelet-based RCM method and it is found that the proposed approach exhibit better recognition accuracy when compared to these well known methods.


log-Gabor Transform Riesz transform Monogenic scale space Principal component analysis Face recognition 


  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P.N., Hespanha, J.P., Kreigman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  3. 3.
    Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scalespace. Journal of Mathematical Imaging and Vision 21(1), 5–26 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. SP 49, 3136–3144 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of Computer Vision and Pattern Recognition (June 2003)Google Scholar
  6. 6.
    Forstner, W., Moonen, B.: A metric for covariance matrices. Technical report, Dept. of Geodesy and Geoinformatics, Stuttgart University (1999)Google Scholar
  7. 7.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)CrossRefGoogle Scholar
  8. 8.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  9. 9.
    Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Washington (2004)Google Scholar
  10. 10.
    Koenderink, J., van Doorn, A.: Representation of local geometry in the visual system. Biological Cybernetics 55, 367–375 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Trans. Computers 42, 300–311 (1993)CrossRefGoogle Scholar
  12. 12.
    Liu, C.: Gabor-Based Kernel PCA with Fractional Power Polynomial Models for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5) (May 2004)Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (2004)Google Scholar
  14. 14.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  15. 15.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proceedings of Computer Vision and Pattern Recognition (June 2003)Google Scholar
  16. 16.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of International Conference on Computer Vision, pp. 525–531 (July 2001)Google Scholar
  17. 17.
    Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proceedings of the IEEE 69(5) (1981)Google Scholar
  18. 18.
    Poriklim, F., Tuzel, O.: Fast construction of covariance matrices for arbitrary size image windows. In: Proceedings of IEEE International Conference on Image Processing, pp. 1581–1584 (2006)Google Scholar
  19. 19.
    Schokopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Muller, K.-R., Ratsch, G., Mola, A.J.: Input space versus feature space in kernel based methods. IEEE Transactions on Neural Networks 10(5), 1299–1319 (1999)Google Scholar
  20. 20.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  21. 21.
    Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Van Gool, L., Moons, T., Ungureanu, D.: Affine/photometric invariants for planar intensity patterns. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  23. 23.
    Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)CrossRefGoogle Scholar
  24. 24.
    Yanwei, P., Yuan, Y., Li, X.: Gabor-based region covariance matrices for face recognition. IEEE Transactions on Circuits and Systems for Video Technology 18(7) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Sharmila Kumari
    • 1
  • B. H. Shekar
    • 2
  1. 1.Department of Computer Science and EngineeringP. A. College of EngineeringMangaloreIndia
  2. 2.Department of Computer ScienceMangalore UniversityIndia

Personalised recommendations