Kernel Based Rough-Fuzzy C-Means

  • Rohan Bhargava
  • Balakrushna Tripathy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


Data clustering has found its usefulness in various fields. Algorithms are mostly developed using euclidean distance. But it has several drawbacks which maybe rectified by using kernel distance formula. In this paper, we propose a kernel based rough-fuzzy C-Means (KRFCM) algorithm and use modified version of the performance indexes (DB and D) obtained by replacing the distance function with kernel function. We provide a comparative analysis of RFCM with KRFCM by computing their DB and D index values. The analysis is based upon both numerical as well as image datasets. The results establish that the proposed algotihtm outperforms the existing one.


Clustering Kernel DB Index Dunn Index Rough-Fuzzy C-Means 


  1. 1.
    MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)Google Scholar
  2. 2.
    Ruspini, E.H.: A new approach to clustering. Information and Control 15(1), 22–32 (1969)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, 32–57 (1973)Google Scholar
  4. 4.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers (1981)Google Scholar
  5. 5.
    Lingras, P., West, J.: Interval set clustering of web users with rough k-means. Journal of Intelligent Information Systems 23(1), 5–16 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Zhou, T., Zhang, Y., Lu, H., Deng, F., Wang, F.: Rough Cluster Algorithm Based on Kernel Function. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 172–179. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Tripathy, B.K., Ghosh, A., Panda, G.K.: Kernel based K-means clustering using rough set. In: IEEE 2012 International Conference on Computer Communication and Informatics, ICCCI (2012)Google Scholar
  8. 8.
    Tripathy, B.K., Ghosh, A., Panda, G.K.: Adaptive K-Means Clustering to Handle Heterogeneous Data Using Basic Rough Set Theory. In: Meghanathan, N., Chaki, N., Nagamalai, D. (eds.) CCSIT 2012, Part I. LNICST, vol. 84, pp. 193–202. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognition Letters 29(12), 1713–1725 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, D.Q., Chen, S.C.: Kernel Based Fuzzy and Possibilistic C-means Clustering. In: Proc. the International Conference Artificial Neural Network, Turkey, pp. 122–125 (2003)Google Scholar
  11. 11.
    Dubois, D., Prade, H.: Rough Fuzzy sets model. International Journal of General Systems 46(1), 191–208 (1990)CrossRefGoogle Scholar
  12. 12.
    Maji, P., Pal, S.K.: RFCM: A Hybrid Clustering Algorithm using rough and fuzzy sets. Fundamenta Informaticae 80(4), 475–496 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Phillips, J.M., Venkatasubramanian, S.: A gentle introduction to the kernel distance, arXiv preprint arXiv:1103.1625 (2011)Google Scholar
  14. 14.
    Mitra, S., Banka, H., Pedrycz, W.: Rough-Fuzzy Collaborative Clustering. IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics 36(4), 795–805 (2006)CrossRefGoogle Scholar
  15. 15.
    Bezdek, J.C., Pal, N.R.: Some new indexes for cluster validity. IEEE Transaction on System, Man and Cybernetics, Part B: Cybernetics 28, 301–315 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rohan Bhargava
    • 1
  • Balakrushna Tripathy
    • 1
  1. 1.School of Computing Science and EngineeringVIT UniversityVelloreIndia

Personalised recommendations