Fuzzy Digital Topology and Geometry and Their Applications to Medical Imaging

  • Punam K. Saha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


The primary end-goal of most medical imaging research program is to collect information about function and physiology of internal human organs or tissues through a variety of in vivo or ex vivo imaging techniques. Often, medical imaging techniques suffer from limited spatial and temporal resolution, noise, background-inhomogeneity, and other artifacts leading to fuzzy representations of target objects in acquired images. Digital topology and geometry play important roles in medical image processing either by expanding the scope of target information or by providing a strong theoretical foundation to a process enhancing its stability, fidelity, and efficiency. The notions of digital topology and geometry are often intertwined in medical imaging applications and sometime it is difficult to draw a dividing line between them. This paper presents recent advancements and overviews of theory and computation of several fuzzy digital topologic and geometric approaches and describe their applications to medical imaging. More specifically, this paper discusses topics related to three-dimensional simple points, local topological parameters, fuzzy skeletonization, characterization of local structures, and their applications to research and clinical studies.


Fuzzy subset digital imaging topology geometry distance transform simple point skeletonization topological classification medical imaging 


  1. 1.
    Cho, Z.H., Jones, J.P., Singh, M.: Foundation of Medical Imaging. Wiley, New York (1993)Google Scholar
  2. 2.
    Rosenfeld, A.: Fuzzy digital topology. Information and Control 40, 76–87 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Rosenfeld, A.: Thee dimensional digital topology. Information and Control 50, 119–127 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  5. 5.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)Google Scholar
  6. 6.
    Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 1028–1032 (1994)CrossRefGoogle Scholar
  7. 7.
    Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Computer Vision and Image Understanding 63, 418–429 (1996)CrossRefGoogle Scholar
  8. 8.
    Rosenfeld, A.: Connectivity in digital pictures. Journal of the Association for Computing Machinery 17, 146–160 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rosenfeld, A.: Arcs and curves in digital Pictures. Journal of the Association for Computing Machinery 20, 81–87 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Udupa, J.K., Odhner, D.: Fast visualization, manipulation, and analysis of binary volumetric objects. IEEE Transactions on Computer Graphics and Applications 11, 53–62 (1991)CrossRefGoogle Scholar
  12. 12.
    Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S.: User-steered image segmentation paradigms: live wire and live lane. Graphical Models and Image Processing 60, 233–260 (1998)CrossRefGoogle Scholar
  13. 13.
    Barrett, W.A., Mortensen, E.N.: Interactive live-wire boundary extraction. Medical Image Analysis 1, 331–341 (1997)CrossRefGoogle Scholar
  14. 14.
    Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graphical Models and Image Processing 58, 246–261 (1996)CrossRefGoogle Scholar
  15. 15.
    Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmentation: theory, algorithms, and validation. Computer Vision and Image Understanding 77, 145–174 (2000)CrossRefGoogle Scholar
  16. 16.
    Han, X., Xu, C., Braga-Neto, U., Prince, J.L.: Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Trans. Med. Imaging 21, 109–121 (2002)CrossRefGoogle Scholar
  17. 17.
    Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 33, 709–720 (2011)CrossRefGoogle Scholar
  18. 18.
    Saha, P.K., Chaudhuri, B.B., Dutta Majumder, D.: A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recognition 30, 1939–1955 (1997)CrossRefGoogle Scholar
  19. 19.
    Jin, D., Saha, P.K.: A new fuzzy skeletonization algorithm and its applications to medical imaging. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 662–671. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Saha, P.K., Chanda, B., Majumder, D.D.: Principles and algorithms for 2-D and 3-D shrinking. Indian Statistical Institute, Calcutta (1991)Google Scholar
  21. 21.
    Saha, P.K., Chaudhuri, B.B., Chanda, B., Dutta Majumder, D.: Topology preservation in 3D digital space. Pattern Recognition 27, 295–300 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gomberg, B.G., Saha, P.K., Song, H.K., Hwang, S.N., Wehrli, F.W.: Topological analysis of trabecular bone MR images. IEEE Transactions on Medical Imaging 19, 166–174 (2000)CrossRefGoogle Scholar
  23. 23.
    Saha, P.K., Gomberg, B.R., Wehrli, F.W.: Three-dimensional digital topological characterization of cancellous bone architecture. International Journal of Imaging Systems and Technology 11, 81–90 (2000)CrossRefGoogle Scholar
  24. 24.
    Saha, P.K., Xu, Y., Duan, H., Heiner, A., Liang, G.: Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE Trans. Med. Imaging 29, 1821–1838 (2010)CrossRefGoogle Scholar
  25. 25.
    Wehrli, F.W., Gomberg, B.R., Saha, P.K., Song, H.K., Hwang, S.N., Snyder, P.J.: Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. Journal of Bone Mineral Research 16, 1520–1531 (2001)CrossRefGoogle Scholar
  26. 26.
    Borgefors, G.: Distance transform in arbitrary dimensions. Computer Vision Graphics Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  27. 27.
    Borgefors, G.: Distance transformations in digital images. Computer Vision Graphics and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  28. 28.
    Borgefors, G.: On digital distance transformation in three dimensions. Computer Vision Graphics Image Processing 64, 368–376 (1996)CrossRefGoogle Scholar
  29. 29.
    Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Computer Vision and Image Understanding 86, 171–190 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Malandain, G.: Acknowledgement of the techinical report by Saha et al titled - principles and algorithms for 2D and 3D shrinking. In: Sophia Antipolis Cedex, France, July 2 (1991); recipient: P. K. SahaGoogle Scholar
  31. 31.
    Saha, P.K.: 2D thinning algorithms and 3D shrinking. In: INRIA, Sophia Antipolis Cedex, France (June 1991)Google Scholar
  32. 32.
    Malandain, G.: Explantion of failure to cite the techinical report by Saha et al titled - principles and algorithms for 2D and 3D shrinking. In: Sophia Antipolis Cedex, France, April 7 (1993)Google Scholar
  33. 33.
    Malandain, G., Bertrand, G.: Fast characterization of 3-D simple points. In: Proceedings of 11th International Conference on Pattern Recognition, pp. 232–235 (1992)Google Scholar
  34. 34.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994)CrossRefzbMATHGoogle Scholar
  35. 35.
    Malandain, G., Bertrand, G., Ayache, N.: Topological segmentation of discrete surfaces. International Journal of Computer Vision 10, 183–197 (1993)CrossRefGoogle Scholar
  36. 36.
    Blum, H. (ed.): A transformation for extracting new descriptors of shape (Models for the Perception of Speech and Visual Form). MIT Press, Cambridge (1967)Google Scholar
  37. 37.
    Saha, P.K., Wehrli, F.W.: Fuzzy distance transform in general digital grids and its applications. Presented at the 7th Joint Conference on Information Sciences, Research Triangular Park, NC (2003)Google Scholar
  38. 38.
    Svensson, S.: Aspects on the reverse fuzzy distance transform. Pattern Recognition Letters 29, 888–896 (2008)CrossRefGoogle Scholar
  39. 39.
    Arcelli, C., Sanniti di Baja, G.: Well-shaped, stable, and reversible skeletons from the (3,4)-distance transform. Journal of Visual Communication and Image Representation 5, 107–115 (1994)CrossRefGoogle Scholar
  40. 40.
    Serino, L., Sanniti di Baja, G., Arcelli, C.: Using the skeleton for 3D object decomposition. Presented at the Scandinavian Conference on Image Analysis, Ystad Saltsjöbad, Sweden (2011)Google Scholar
  41. 41.
    Ladinsky, G.A., Vasilic, B., Popescu, A.M., Wald, M., Zemel, B.S., Snyder, P.J., Loh, L., Song, H.K., Saha, P.K., Wright, A.C., Wehrli, F.W.: Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J. Bone Miner. Res. 23, 64–74 (2008)CrossRefGoogle Scholar
  42. 42.
    Stauber, M., Muller, R.: Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry. Bone 38, 475–484 (2006)CrossRefGoogle Scholar
  43. 43.
    Liu, X.S., Sajda, P., Saha, P.K., Wehrli, F.W., Guo, X.E.: Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J. Bone Miner. Res. 21, 1608–1617 (2006)CrossRefGoogle Scholar
  44. 44.
    Chang, G., Pakin, S.K., Schweitzer, M.E., Saha, P.K., Regatte, R.R.: Adaptations in trabecular bone microarchitecture in Olympic athletes determined by 7T MRI. J. Magn. Reson. Imaging 27, 1089–1095 (2008)CrossRefGoogle Scholar
  45. 45.
    Liu, Y., Saha, P.K., Xu, Z.: Quantitative characterization of trabecular bone micro-architecture using tensor scale and multi-detector CT imaging. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 124–131. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. 46.
    Saha, P.K.: Tensor scale: a local morphometric parameter with applications to computer vision and image processing. Computer Vision and Image Understanding 99, 384–413 (2005)CrossRefGoogle Scholar
  47. 47.
    Burghardt, A.J., Link, T.M., Majumdar, S.: High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin. Orthop. Relat. Res. 469, 2179–2193 (2011)CrossRefGoogle Scholar
  48. 48.
    Saha, P.K., Amelon, R.E., Liu, Y., Li, C., Jin, D., Chen, C., Fishbaugher, J.M., Letuchy, E.M., Calarge, C.A., Janz, K.F., Hornick, D.B., Eichenberger-Gilmore, J., Burns, T.L., Torner, J.C., Levy, S.M.: In vivo study of trabecular and cortical bone in young adults with varying trajectories of bone development using multi-row detector CT imaging. In: Proceedings of Annual Meeting of the American Society for Bone and Mineral Research, Baltimore, MD (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Punam K. Saha
    • 1
  1. 1.Department of Electrical and Computer Engineering, Department of RadiologyUniversity of IowaIowa CityUSA

Personalised recommendations