Advertisement

A Fuzzy Hybrid Framework for Offline Signature Verification

  • Geetha Ganapathi
  • R Nadarajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Signatures are widely used means of personal verification. This paper presents a fuzzy hybrid framework based person-dependent off-line signature verification using fuzzy inference rules in image contrast enhancement, fuzzy rough reduction for feature selection and Simplified fuzzy ARTMAP for verification. Three sets of experimental studies are conducted on CEDAR benchmark dataset and the results reported are comparable to other techniques in terms of classification accuracy and time.

Keywords

Off-line signature verification Simplified fuzzy ARTMAP fuzzy inference rules contrast intensification fuzzy rough sets feature selection 

References

  1. 1.
    Chen, S., Srihari, S.: Use of Exterior Contours and Shape Features in Off-line Signature Verification. In: Proc. of the 8th Internat. Conf. on Document Analysis and Recognition (ICDAR 2005), vol. 2, pp. 1280–1284 (2005)Google Scholar
  2. 2.
    Chen, S., Srihari, S.: A New Off-line Signature Verification Method based on Graph Matching. In: Proc. of the 18th Internat. Conf. on Pattern Recognition (ICPR 2006), vol. 2, pp. 869–872 (2006)Google Scholar
  3. 3.
    Favata, J., Srikantan, G.: A Multiple Feature/Resolution Approach to Hand printed Digit and Character Recognition. Int. J. Imaging Syst. Technol. 7(4), 304–311 (1996)CrossRefGoogle Scholar
  4. 4.
    Hassanien, A.E., Badr, A.: A Comparative study on Digital Mammography Enhancement Algorithm based on Fuzzy Theory. Studies in Information and Control 12(1), 21–31 (2003)Google Scholar
  5. 5.
    Jensen, R., Shen, Q.: New Approaches to Fuzzy-Rough Feature Selection. IEEE Transactions on Fuzzy Systems 17(4), 824–838 (2009)CrossRefGoogle Scholar
  6. 6.
    Kalera, M.K., Srihari, S., Xu, A.: Offline Signature Verification and Identification using distance statistics. Intern. J. Pattern Recognit. Artif. Intell. 18(7), 1339–1360 (2004)CrossRefGoogle Scholar
  7. 7.
    Kasuba, T.: Simplified Fuzzy ARTMAP. AI Expert, 18–25 (November 1993)Google Scholar
  8. 8.
    Kumar, R., Kundu, L., Sharma, J.D., Chanda, B.: A writer-independent off-line signature verification system based on signature morphology. In: Proc. of the IITM 2010, pp. 261–265. ACM (2010)Google Scholar
  9. 9.
    Kumar, R., Sharma, J.D., Chanda, B.: Writer-independent off-line signature verification using surroundedness feature. Pattern Recognit. Lett. 33, 301–308 (2012)CrossRefGoogle Scholar
  10. 10.
    Larkins, R., Mayo, M.: Adaptive Feature Thresholding for Off-line Signature Verification. In: 23rd Internat. Conf. in Image and Vision Computing New Zealand (IVCNZ 2008), pp. 1–6 (2008)Google Scholar
  11. 11.
    Lazebnik, S., Schmid, S., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit (CVPR), vol. 2, pp. 2169–2178 (2006)Google Scholar
  12. 12.
    Pal, S.K., King, R.A.: Image Enhancement using Smoothing with Fuzzy sets. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 11(7), 494–501 (1981)CrossRefGoogle Scholar
  13. 13.
    Rajasekaran, S., Vijayalakshmi Pai, G.: Neural Networks, Fuzzy Logic and Genetic Algorithm - Synthesis and Applications. Prentice Hall of India (2011)Google Scholar
  14. 14.
    Srihari, S., Xu, A., Kalera, M.K.: Learning Strategies and Classification Methods for Offline Signature Verification. In: Proc. of the 7th Internat. Workshop on Frontiers in Handwriting Recognition (IWHR), pp. 161–166 (2004)Google Scholar
  15. 15.
    Tizhoosh, H.R., Krell, G., Michaelis, B.: On Fuzzy Enhancement of Megavoltage images in Radiation Therapy. IEEE Conference of Fuzzy Systems, Barcelona, Spain 3, 1399–1404 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Geetha Ganapathi
    • 1
  • R Nadarajan
    • 1
  1. 1.P.S.G. College of TechnologyCoimbatoreIndia

Personalised recommendations