Automatic Generation of Multiple Choice Questions Using Wikipedia

  • Arjun Singh Bhatia
  • Manas Kirti
  • Sujan Kumar Saha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


In this paper we present a system for automatic generation of multiple choice test items using Wikipedia. Here we propose a methodology for potential sentence selection with the help of existing test items in the web. The sentences are selected using a set of pattern extracted from the existing questions. We also propose a novel technique for generating named entity distractors. For generating quality named entity distractors we extract certain additional attribute values on the key from the web and search the Wikipedia for the entities having similar attribute values. We run our experiments in sports domain. The generated questions and distractors are evaluated by a set of human evaluators using a set of parameters. The evaluation results demonstrate that the system is reasonably accurate.


Target Word Multiple Choice Question Automatic Generation Multiple Choice Test Name Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agarwal, M., Mannem, P.: Automatic Gap-fill Question Generation from Text Books. In: Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 56–64 (2011)Google Scholar
  2. Aldabe, I., de Lacalle, M.L., Maritxalar, M., Martinez, E., Uria, L.: ArikIturri: An Automatic Question Generator Based on Corpora and NLP Techniques. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 584–594. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. Aldabe, I., Maritxalar, M.: Automatic Distractor Generation for Domain Specific Texts. In: Loftsson, H., Rögnvaldsson, E., Helgadóttir, S. (eds.) IceTAL 2010. LNCS (LNAI), vol. 6233, pp. 27–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. Brown, J.C., Frishkoff, G.A., Eskenazi, M.: Automatic question generation for vocabulary assessment. In: Proceedings of HLT/EMNLP, pp. 819–826 (2005)Google Scholar
  5. Correia, R., Baptista, J., Mamede, N., Trancoso, I., Eskenazi, M.: Automatic Generation of Cloze Question Distractors. In: Second Language Studies: Acquisition, Learning, Education and Technology (2010)Google Scholar
  6. Gronlund, N.: Constructing achievement tests. Prentice-Hall Inc., New York (1982)Google Scholar
  7. Mitkov, R., Ha, L.A.: Computer-aided generation of multiple-choice tests. In: Proceedings of the HLT/NAACL 2003 Workshop on Building educational applications using Natural Language Processing, pp. 17–22 (2003)Google Scholar
  8. Mitkov, R., An, L.A., Karamanis, N.: A computer-aided environment for generating multiple-choice test items. Journal of Natural Language Engineering 12(2), 177–194 (2006)CrossRefGoogle Scholar
  9. Mitkov, R., Ha, L.A., Varga, A., Rello, L.: Semantic similarity of distractors in multiple-choice tests: extrinsic evaluation. In: Proceedings of the EACL 2009 Workshop on GEometical Models of Natural Language Semantics, pp. 49–56 (2009)Google Scholar
  10. Papasalouros, A., Kanaris, K., KotisAutomatic, K.: Generation of multiple-choice questions from domain ontologies. IADIS e-Learning (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arjun Singh Bhatia
    • 1
  • Manas Kirti
    • 1
  • Sujan Kumar Saha
    • 1
  1. 1.Department of Computer Science and EngineeringBirla Institute of TechnologyMesraIndia

Personalised recommendations