Optimizing Research Progress Trajectories with Semantic Power Graphs

  • G. S. Mahalakshmi
  • S. Sendhilkumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)


Any researcher who is taking up a new research work must explore the works done in the past. For this we propose an idea to track the possible work progresses of a particular research article through semantic based approaches. In addition we analyze the co-citations and cross-citations among research works to avoid leaving out any significant works of the past. Finally we attempt to represent the citation networks and related meta-info using power graphs. This technique reduces the overhead of huge dimensions of citation networks thereby providing optimized trajectory representations which leads to finding significant research progress trajectories.


citation co-citation trajectory semantics H-index power graph main path key-route path backward ideal path 


  1. 1.
    Batagelj, V.: Efficient algorithms for citation network analysis. Prep. Ser. Univ. Ljubljana, Inst. Math. 41(897), 1–29 (2003)Google Scholar
  2. 2.
    Carlero-Medina, C., Noyons, E.C.M.: Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. Journal of Informetrics 2(4), 272–279 (2008)CrossRefGoogle Scholar
  3. 3.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences of the United States of America 102(46), 16569–16572 (2005)CrossRefGoogle Scholar
  4. 4.
    Lu, L.Y.Y., Lan, Y.L., Liu, J.S.: A novel approach for exploring technological development trajectories. In: 2012 IEEE International Conference on Management of Innovation and Technology (ICMIT), pp. 504–509 (2012)Google Scholar
  5. 5.
    Lu, L.Y.Y., Lin, B.J.Y., Liu, J.S., Yu, C.Y.: Ethics in nanotechnology: What’s being done? What’s missing? Journal of Business Ethics 109(4), 583–598 (2011)CrossRefGoogle Scholar
  6. 6.
    Lucio-Arias, D., Leydesdorff, L.: Knowledge Emergence in Scientific Communication: From “Fullerenes” to “Nanotubes”. Scientometrics 70(3), 603–632 (2007)CrossRefGoogle Scholar
  7. 7.
    Mina, A.R., Ramlogan, G., Tampubolon, J.S.: Metcalfe,’Mapping Evolutionary Trajectories: Applications to the Growth and Transformation of Medical Knowledge’. Research Policy 36(5), 789–806 (2007)CrossRefGoogle Scholar
  8. 8.
    Moore, S., Haines, V., Hawe, P., Shiell, A.: Lost in translation: A genealogy of the “social capital” concept in public health. Journal of Epidemiology and Community Health 60, 729–734 (2006)CrossRefGoogle Scholar
  9. 9.
    Hummon, N., Doreian, P.: Computational methods for social network analysis. Social Networks 12, 273–288 (1990)CrossRefGoogle Scholar
  10. 10.
    Hummon, N.P., Doreian, P., Freeman, L.C.: Analyzing the Structure of the Centrality-Productivity Literature Created Between 1948 and 1979. Science Communication 11(4), 459–480 (1990)CrossRefGoogle Scholar
  11. 11.
    Verspagen, B.: Mapping Technological Trajectories as Patent Citation Networks: A Study on the History of Fuel Cell Research. Advances in Complex Systems 10, 93–115 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. S. Mahalakshmi
    • 1
  • S. Sendhilkumar
    • 2
  1. 1.Department of Computer Science and EngineeringAnna UniversityIndia
  2. 2.Department of Information Science and TechnologyAnna UniversityIndia

Personalised recommendations