Advertisement

Interactive Computations: Toward Risk Management in Interactive Intelligent Systems

  • Andrzej Jankowski
  • Andrzej Skowron
  • Roman Swiniarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Understanding the nature of interactions is regarded as one of the biggest challenges in projects related to complex adaptive systems. We discuss foundations for interactive computations in Interactive Intelligent Systems (IIS), developed in the Wistech program and used for behavior modeling of complex systems. We emphasize the key role of risk management in problem solving by IIS. The considerations are supported by real-life projects concerning, e.g., medical diagnosis and therapy support, control of an unmanned helicopter, algorithmic trading or fire commander decision support.

Keywords

rough sets granular computing interactive computations interactive intelligent systems risk management 

References

  1. 1.
    ISO 31000 standard, http://webstore.ansi.org/
  2. 2.
    Bazan, J.: Hierarchical classifiers for complex spatio-temporal concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Einstein, A.: Geometrie und Erfahrung (Geometry and Experience). Julius Springer, Berlin (1921)Google Scholar
  4. 4.
    Goldin, D., Smolka, S., Wegner, P. (eds.): Interactive Computation: The New Paradigm. Springer (2006)Google Scholar
  5. 5.
    Heller, M.: The Ontology of Physical Objects. Four Dimensional Hunks of Matter. Cambridge Studies in Philosophy. Cambridge University Press (1990)Google Scholar
  6. 6.
    Jankowski, A., Skowron, A.: A WisTech paradigm for intelligent systems. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 94–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Jankowski, A., Skowron, A.: Wisdom technology: A rough-granular approach. In: Marciniak, M., Mykowiecka, A. (eds.) Bolc Festschrift. LNCS, vol. 5070, pp. 3–41. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Jankowski, A., Skowron, A.: Practical Issues of Complex Systems Engineering: Wisdom Technology Approach. Springer, Heidelberg (2014) (in preparation)Google Scholar
  9. 9.
    Kahneman, D.: Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2002)CrossRefGoogle Scholar
  10. 10.
    Omicini, A., Ricci, A., Viroli, M.: The multidisciplinary patterns of interaction from sciences to computer science. In: Goldin, et al. (eds.) [14], pp. 395–414Google Scholar
  11. 11.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)CrossRefGoogle Scholar
  13. 13.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. The Addison Wesley, Moston (1984)Google Scholar
  15. 15.
    Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96–146 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pedrycz, W., Skowron, S., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, Hoboken (2008)Google Scholar
  17. 17.
    Shevchenko, P. (ed.): Modelling Operational Risk Using Bayesian Inference. Springer (2011)Google Scholar
  18. 18.
    Skowron, A., Jankowski, A., Wasilewski, P.: Risk management and interactive computational systems. Journal of Advanced Mathematics and Applications 1, 61–73 (2012)Google Scholar
  19. 19.
    Skowron, A., Stepaniuk, J., Swiniarski, R.: Modeling rough granular computing based on approximation spaces. Information Sciences 184, 20–43 (2012)CrossRefGoogle Scholar
  20. 20.
    Skowron, A., Wasilewski, P.: Information systems in modeling interactive computations on granules. Theoretical Computer Science 412(42), 5939–5959 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Skowron, A., Wasilewski, P.: Interactive information systems: Toward perception based computing. Theoretical Computer Science 454, 240–260 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Slovik, P., Cournède.: Macroeconomic Impact of Basel III, Working Papers, vol. 844. OECD Economics Publishing, OECD Economics Department (2011), http://www.oecd.org/eco/Workingpapers
  23. 23.
    Stepaniuk, J.: Rough-Granular Computing in Knowledge Discovery and Data Mining. SCI, vol. 152. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  24. 24.
    Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)zbMATHGoogle Scholar
  25. 25.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)Google Scholar
  26. 26.
    Zadeh, L.A.: From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems 45, 105–119 (1999)MathSciNetGoogle Scholar
  27. 27.
    Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrzej Jankowski
    • 1
  • Andrzej Skowron
    • 2
  • Roman Swiniarski
    • 3
    • 4
  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of MathematicsUniversity of WarsawWarsawPoland
  3. 3.Department of Computer ScienceSan Diego State UniversitySan DiegoUSA
  4. 4.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations