Symbiotic Simulation of Assembly Quality Control in Large Gas Turbine Manufacturing

  • Xiangrui Meng
  • Linxuan Zhang
  • Mian Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 402)


Assembly quality control is a vital problem in large gas turbine manufacturing. Assembly quality may not meet the requirements though each manufactured part’s precision is within its range. The paper discusses the assembly quality analysis and control in large gas turbine manufacturing. An intelligent assembly quality control solution using symbiotic simulation is proposed, which combines ON-line Simulation Module (ONSM) with OFF-line Simulation Module (OFFSM). Its mechanisms and partial techniques are discussed. In the end, a measurement simulation of a corporation’s gas turbine using Virtual Assembly Supported System (VASS) is realized, which verifies the mechanisms of the solution.


assembly quality control symbiotic simulation assembly process tolerance analysis point cloud virtual training 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilar, J.J., Sanz, M., Guillomia, D., Lope, M., Bueno, I.: Analysis, characterization and accuracy improvement of optical coordinate measurement systems for car body assembly quality control. Int. J. Adv. Manuf. Tech. 30, 1174–1190 (2006)CrossRefGoogle Scholar
  2. 2.
    Asha, A., Kannan, S., Jayabalan, V.: Optimization of clearance variation in selective assembly for components with multiple characteristics. Int. J. Adv. Manuf. Tech. 38, 1026–1044 (2008)CrossRefGoogle Scholar
  3. 3.
    Su, Q., Liu, L., Whitney, D.E.: A Systematic Study of the Prediction Model for Operator-Induced Assembly Defects Based on Assembly Complexity Factors. IEEE T. Syst. Man. Cy. A 40, 107–120 (2010)CrossRefGoogle Scholar
  4. 4.
    Yuefei, Z.: Study on Assembly Deformation and Control of Gas Turbine Rotor 680. Shanghai Jiao Tong University (2011)Google Scholar
  5. 5.
    Bao-Zhong, W., Jing, Q., Guo-Xi, L., Jing-Zhong, G.: Research on complex precision mechanical system assembly parallel control system. In: 2nd International Conference on Advanced Design and Manufacturing Engineering, ADME 2012, August 16-18, vol. 215-216, pp. 1267–1275. Trans. Tech., Publications, Taiyuan (2012)Google Scholar
  6. 6.
    Huang, S.Y., Cai, W., Turner, S.J., Hsu, W.J., Zhou, S., Low, M.Y.H., Fujimoto, R., Ayani, R.: A generic symbiotic simulation framework. In: 20th Workshop on Principles of Advanced and Distributed Simulation, PADS 2006, vol. 131. IEEE (2006)Google Scholar
  7. 7.
    Aydt, H., Turner, S.J., Cai, W.T., Low, M.: Symbiotic simulation systems: An extended definition motivated by symbiosis in biology. In: Proceedings of the 22nd International Workshop on Principles of Advanced and Distributed Simulation, PADS 2008, pp. 109–116 (2008)Google Scholar
  8. 8.
    Darema, F.: Dynamic data driven applications systems: A new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    3D Modeling Components and Solid Modeler | Spatial,
  10. 10.
    Bi, Z.M., Wang, L.H.: Advances in 3D data acquisition and processing for industrial applications. Robot. Cim.-Int. Manuf. 26, 403–413 (2010)CrossRefGoogle Scholar
  11. 11.
    Portable Measuring Arm, Arm CMM with Laser Line Probe | FaroArm | FARO Asia,
  12. 12.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE T. Vis. Comput. Gr. 9, 3–15 (2003)CrossRefGoogle Scholar
  13. 13.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Computer Graphics Annual Conference (SIGGRAPH 2001), August 12-17, pp. 67–76. Association for Computing Machinery, Los Angeles (2001)Google Scholar
  14. 14.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes: Robotics-DL tentative, pp. 586–606. International Society for Optics and Photonics (1992)Google Scholar
  15. 15.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.: Multi-level partition of unity implicits. In: ACM SIGGRAPH 2003 Papers, SIGGRAPH 2003, July 27-31, pp. 463–470. Association for Computing Machinery, San Diego (2003)CrossRefGoogle Scholar
  16. 16.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces.: Visualization. In: Visualization, VIS 2002, pp. 163–170. IEEE (2002)Google Scholar
  17. 17.
    Stork, A., Sevilmis, N., Weber, D., Gorecky, D., Stahl, C., Loskyll, M., Michel, F.: Enabling virtual assembly training in and beyond the automotive industry. In: 2012 18th International Conference on Virtual Systems and Multimedia (VSMM), pp. 347–352 (2012)Google Scholar
  18. 18.
  19. 19.
    Xia, P.J., Lopes, A.M., Restivo, M.T., Yao, Y.X.: A new type haptics-based virtual environment system for assembly training of complex products. Int. J. Adv. Manuf. Tech. 58, 379–396 (2012)CrossRefGoogle Scholar
  20. 20.
    Li, Z., Lin-xuan, Z., Tian-Yuan, X.: Introduction of a Virtual Assembly Supported System. Journal of System Simulation, 1149–1153 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiangrui Meng
    • 1
  • Linxuan Zhang
    • 1
  • Mian Wang
    • 1
  1. 1.National CIMS Engineering Research Center, Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations