Advertisement

Intelligent Identification Methods for Rotor Resistance Parameter of Induction Motor Drive

  • Moulay Rachid Douiri
  • Mohamed Cherkaoui
Part of the Communications in Computer and Information Science book series (CCIS, volume 402)

Abstract

This paper presents two intelligent identification approaches for rotor resistance of an indirect vector controlled induction motor drive. First approach is based on fuzzy logic control (FLC) able to compensate for variations and errors, FLC scheme was employed to overcome the lack of a precise mathematical model of the process. In the second approach is based on artificial neural networks (ANNs), the error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The performances of the two intelligent approaches are investigated and compared in simulation.

Keywords

fuzzy logic neural networks indirect vector control induction motor rotor resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leonhard, W.: Control of Electrical Drives. Springer (1996)Google Scholar
  2. 2.
    Blaschke, F.: The Principle of Field Orientation as Applied to the New Transvector Closed-Loop Control System for Rotating Field Machines. Siemens Review 34(5), 217–223 (1972)Google Scholar
  3. 3.
    Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: Analysis of Electric Machinery and Drive Systems. Wiley Interscience, John Wiley & Sons, NY (2002)Google Scholar
  4. 4.
    Hasse, K.: On the Dynamics of Speed Control of a Static AC Drive with a Squirrel-Cage Induction Machine. Dissertation for the Doctoral Degree, Darmstadt (1969)Google Scholar
  5. 5.
    Hadj Saïd, S., Mimouni, M.F., M’Sahli, F., Farza, M.: High Gain Observer Based On-Line Rotor and Stator Resistances Estimation for IMs. Simulation Modelling Practice and Theory 19, 1518–1529 (2011)CrossRefGoogle Scholar
  6. 6.
    Bartolini, G., Pisano, A., Pisu, P.: Simplified Exponentially Convergent Rotor Resistance Estimation for Induction Motors. IEEE Transactions on Automatic Control 48(2), 325–330 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kojabadi, H.M.: Active Power and MRAS Based Rotor Resistance Identification of an IM Drive. Simul Modell Practice Theory 17(2), 376–389 (2009)CrossRefGoogle Scholar
  8. 8.
    Abbasian, T., Salmasi, F.R., Yazdanpanah, M.J.: Improved Adaptive Feedback Linearization Control of Induction Motors Based on Online Estimation of Core Loss and Rotor Resistance. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2006, Taormina-Sicily, Italy, pp. S32/22–27 (2006)Google Scholar
  9. 9.
    Toliyat, H.A., Levi, E., Raina, M.: A Review of RFO Induction Motor Parameter Estimation Techniques. IEEE Trans Energy Convers 18(2), 271–283 (2003)CrossRefGoogle Scholar
  10. 10.
    Toliyat, H.A., Wlas, M., Krzemiriski, Z.: Neural-Network-Based Parameter Estimations of Induction Motors. IEEE Transactions on Industrial Electronics 55(4), 1783–1794 (2008)CrossRefGoogle Scholar
  11. 11.
    Zidani, F., Nait-Said, M.S., Benbouzid, M.E.H., Diallo, D., Abdessemed, R.: A Fuzzy Rotor Resistance Updating Scheme for an IFOC Induction Motor Drive. IEEE Power Engineering Review 21(11), 47–50 (2001)CrossRefGoogle Scholar
  12. 12.
    Zadeh, L.A.: Fuzzy Logic. IEEE Computer Magazine 1(4), 83–92 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zimmermann, H.J.: Fuzzy Sets, Decision Marking, and Expert Systems, Boston, Dordrecht, Lancaster (1987)Google Scholar
  15. 15.
    Chen, S.-M.A.: Fuzzy Approach for Rule-Based Systems Based on Fuzzy Logics. IEEE Trans. Syst. Man and Cybernetics 26(5), 769–778 (1996)CrossRefGoogle Scholar
  16. 16.
    Livingstone, D.J.: Artificial Neural Networks: Methods and Applications. Humana Press Inc. (2009)Google Scholar
  17. 17.
    Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Moulay Rachid Douiri
    • 1
  • Mohamed Cherkaoui
    • 1
  1. 1.Department of Electrical EngineeringMohammadia Engineering SchoolMorocco

Personalised recommendations