Advertisement

Two-Stage Nested Optimization-Based Uncertainty Propagation Method for Uncertainty Reduction

  • Xiaochao Qian
  • Wei Li
  • Ming Yang
Part of the Communications in Computer and Information Science book series (CCIS, volume 402)

Abstract

A new method of epistemic uncertainty reduction is investigated according to the uncertainty of modeling and simulation. First, technical background of the uncertainty propagation in modeling and simulation is introduced. Uncertainty propagation procedure is divided into three major steps. Next, an epistemic uncertainty reduction method based on two-stage nested sampling uncertainty propagation is proposed, Monte Carlo Simulation method for the inner loop is applied to propagate the aleatory uncertainties and method based on optimization method is applied for the outer loop to propagate the epistemic uncertainties. The optimization objective function is the difference between the result of inner loop and the experiment data. Finally, the thermal challenge problem is given to validate the reasonableness and effectiveness of the proposed method.

Keywords

simulation uncertainty propagation epistemic uncertainty reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booker, J.M., Ross, T.J.: An evolution of uncertainty assessment and quantification. Scientia Iranica 18(3), 669–676 (2011)CrossRefGoogle Scholar
  2. 2.
    Pilch, M., Trucano, T.G., Helton, J.C.: Ideas underlying the Quantification of Margins and Uncertainties. Reliability Engineering & System Safety 96(9SI), 965–975 (2011)CrossRefGoogle Scholar
  3. 3.
    Sankararaman, S., Mahadevan, S.: Model validation under epistemic uncertainty. Reliability Engineering & System Safety 96(9SI), 1232–1241 (2011)CrossRefGoogle Scholar
  4. 4.
    Helton, J.C., Johnson, J.D.: Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty. Reliability Engineering & System Safety 96(9SI), 1034–1052 (2011)CrossRefGoogle Scholar
  5. 5.
    Ferson, S., Oberkampf, W.L., Ginzburg, L.: Model validation and predictive capability for the thermal challenge problem. Comput. Methods Appl. Mech. Engrg. 197(29-32), 2408–2430 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Yuan, J., Ng, S.H.: A sequential approach for stochastic computer model calibration and prediction. Reliability Engineering & System Safety 111, 273–286 (2013)CrossRefGoogle Scholar
  7. 7.
    Dowding, K.J., Pilch, M., Hills, R.G.: Formulation of the thermal problem. Comput. Methods Appl. Mech. Engrg. 197(29-32), 2385–2389 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Roy, C.J., Oberkampf, W.L.: A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Engrg. 200(25-28), 2131–2144 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Oberkampf, W.L., Deland, S.M., Rutherford, B.M., et al.: Error and uncertainty in modeling and simulation. Reliability Engineering & System Safety 75(3), 333–357 (2002)CrossRefGoogle Scholar
  10. 10.
    Liu, F., Bayarri, M.J., Berger, J.O., et al.: A Bayesian analysis of the thermal challenge problem. Comput. Methods Appl. Mech. Engrg. 197(29-32), 2457–2466 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    McFarland, J., Mahadevan, S.: Multivariate significance testing and model calibration under uncertainty. Comput. Methods Appl. Mech. Engrg. 197(29-32), 2467–2479 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Xiong, Y., Chen, W., Tsui, K.L., et al.: A better understanding of model updating strategies in validating engineering models. Comput. Methods Appl. Mech. Engrg. 198(15-16), 1327–1337 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hills, R.G., Dowding, K.J.: Multivariate approach to the thermal challenge problem. Comput. Methods Appl. Mech. Engrg. 197(29-32), 2442–2456 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaochao Qian
    • 1
  • Wei Li
    • 1
  • Ming Yang
    • 1
  1. 1.Control and Simulation CenterHarbin Institute of TechnologyHarbinP.R. China

Personalised recommendations