Advertisement

Generating the Confidence Interval of Time Averaged Estimator Using Threshold Bootstrap

  • Jinsoo Park
  • Yun Bae Kim
  • Haneul Lee
  • Gisun Jung
  • Sangeun Kim
  • Jeong Seok Kang
  • Jay Jou
  • Yeon Jae Jung
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 402)

Abstract

Threshold bootstrap is a modified bootstrap method that resamples data from the autocorrelated simulation outputs. The threshold bootstrap calculate the ensemble average of sample as an estimator for population mean as do other bootstrap methods. Sometimes, however, an estimator of simulation output is generated by the concept of time average such as mean queue size in queueing system. In this situation, to analyze the simulation output more efficiently, we introduce a method of generating the confidence intervals for time averaged estimators using the threshold bootstrap. Numerical examples are provided to verify the confidence interval produced by our method.

Keywords

Simulation Output Analysis Confidence Interval Time Averaged Estimator Threshold Bootstrap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Efron, B.: Bootstrap Methods: Another Look at the jackknife. The Annals of Statistics 7, 1–26 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Efron, B., Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals and Other Measures of Statistical Accuracy. Statistical Science 1, 54–75 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Melamed, B., Whitt, W.: On Arrivals that See Time Averages: A martingale Approach. Journal of Applied Probability 27, 376–384 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kim, Y.B., Whillemain, T.R., Haddock, J., Runger, G.C.: The threshold bootstrap: a new approach to simulation output analysis. In: Proceedings of the 1993 Winter Simulation Conference, pp. 498–502 (1993)Google Scholar
  5. 5.
    Kùnsch, H.R.: The jackknife and the bootstrap for general stationary observations. Annals of Statistics 17, 1217–1241 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Liu, R., Singh, K.: Moving blacks jackknife and bootstrap capture weak dependence. In: Lepage, R., Billard, L. (eds.) Exploring the Limits of Bootstrap, pp. 225–248. Willey, New York (1992)Google Scholar
  7. 7.
    Park Dae, S., Kim, Y.B., Shin, K.I., Willemain, T.R.: Simulation output analysis using the threshold bootstrap. European Journal of Operational Research 134, 17–28 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Daesu, P., Willemain, T.R.: The threshold bootstrap and threshold jackknife. Computational Statistics & Data Analysis 31, 187–202 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hall, P., Horowitz, J.L., Jing, B.-Y.: On blocking rules for the bootstrap with dependent data. Biometrika 82(3), 561–574 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hall, P., Jing, B.: On Sample Reuse Methods for Dependent Data. Journal of the Royal Statistical Society 58(4), 727–737 (1996)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Politis, D.N., Romano, J.P.: The Stationary Bootstrap. Journal of American Statistics Association 89, 1303–1313 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wolff, R.W.: Poisson Arrivals See Time Averages. Operations Research 30, 223–231 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jinsoo Park
    • 1
  • Yun Bae Kim
    • 2
  • Haneul Lee
    • 2
  • Gisun Jung
    • 2
  • Sangeun Kim
    • 2
  • Jeong Seok Kang
    • 3
  • Jay Jou
    • 3
  • Yeon Jae Jung
    • 3
  1. 1.Dept. of Management Information SystemsYong In UniversityRepublic of Korea
  2. 2.Dept. of Systems Management EngineeringSungkyunkwan UniversityRepublic of Korea
  3. 3.Dept. of Management of TechnologySungkyunkwan UniversityRepublic of Korea

Personalised recommendations