Advertisement

Effects of Random Number Generators on V2X Communication Simulation

  • Robert Protzmann
  • Björn Schünemann
  • Ilja Radusch
Part of the Communications in Computer and Information Science book series (CCIS, volume 402)

Abstract

Detailed simulation models have to incorporate random effects. Since the generation of randomness is subject to several shortcomings, this needs to be considered for the setup and evaluation of simulations. On the basis of well-known metrics for the domain of V2X communication we will evaluate the influences of differently generated random sequences on the simulation. We will show that it is important to pay attention to avoid skewed results caused by random number generation and ensure the statistical relevance of the simulation series. It can be stated that well established random number generators are suitable. Meaningful simulation results rely rather on a sufficient number of simulation runs which in turn will depend on the applied models.

Keywords

RNG V2X simulation verification VSimRTI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartenstein, H., Laberteaux, K.: VANET: vehicular applications and inter-networking technologies, vol. 1. Wiley Online Library (2010)Google Scholar
  2. 2.
    Protzmann, R., Mahler, K., Oltmann, K., Radusch, I.: Extending the v2x simulation environment vsimrti with advanced communication models. In: 2012 12th International Conference on ITS Telecommunications (ITST), pp. 683–688. IEEE (2012)Google Scholar
  3. 3.
    Law, A.M.: Simulation Modeling and Analysis. 4rd edn. McGraw-Hill Higher Education (2007)Google Scholar
  4. 4.
    Matsumoto, M., Saito, M., Haramoto, H., Nishimura, T.: Pseudorandom number generation: Impossibility and compromise. J. UCS 12(6), 672–690 (2006)MathSciNetGoogle Scholar
  5. 5.
    Fishman, G.S.: Monte Carlo: concepts, algorithms, and applications. Springer series in operations research. Springer (1996)Google Scholar
  6. 6.
    Marsaglia, G.: Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences 61(1), 25–28 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Entacher, K.: A collection of classical pseudorandom number generators with linear structures: advanced version (2000)Google Scholar
  8. 8.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS) 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM Journal on Computing 15(2), 364–383 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schünemann, B.: V2x simulation runtime infrastructure vsimrti: An assessment tool to design smart traffic management systems. Computer Networks (2011)Google Scholar
  11. 11.
    Massey Jr, F.J.: The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical Association 46(253), 68–78 (1951)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Protzmann
    • 1
  • Björn Schünemann
    • 2
  • Ilja Radusch
    • 2
  1. 1.Automotive Services and Communication TechnologiesFraunhofer FOKUS, BerlinGermany
  2. 2.OKS / Daimler Center for Automotive IT InnovationsTechnische Universität BerlinGermany

Personalised recommendations