Advertisement

An Agent-Based Modeling and Evolutionary Optimization Approach for Vulnerability Analysis of Critical Infrastructure Networks

  • Akhila Kizhakkedath
  • Kang Tai
  • Mong Soon Sim
  • Robert Lee Kong Tiong
  • Jiaying Lin
Part of the Communications in Computer and Information Science book series (CCIS, volume 402)

Abstract

Critical infrastructure networks include the highly complex and interconnected systems that are so vital to a city or state that any sudden disruption can result in debilitating impacts on human life, the economy and the society as a whole. Some of the interdependencies among infrastructure components are perhaps unforeseen and methods for vulnerability analysis of infrastructure networks should therefore incorporate the possibility of potential unforeseen interdependencies in such networks. This paper proposes using an optimization approach to iteratively search for potential unforeseen interdependencies and failures that can maximize connectivity loss in infrastructure networks due to cascading failures. In order to illustrate the proposed approach, an agent based model of an infrastructure network and its known interdependencies has been presented, with a genetic algorithm applied to search for potential unforeseen interdependencies as well as node failures that can result in the maximum loss of infrastructure network connectivity.

Keywords

critical infrastructure network interdependencies network analysis evolutionary optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clinton, W.J.: Executive order 13010 - Critical infrastructure protection. Federal Register 61, 37347–37350 (1996)Google Scholar
  2. 2.
    Lewis, T.G.: Critical infrastructure Protection Homeland Security. John Wiley & Sons, New Jersey (2006)CrossRefGoogle Scholar
  3. 3.
    Rinaldi, S.M.: Modeling and Simulating Critical Infrastructures and Their Interdependencies. In: International Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS 2004), Hawaii, USA, January 5-8, pp. 20054–20062 (2004)Google Scholar
  4. 4.
    Rocco, C.M., Ramirez-Marquez, J.E., Salazar, D.E., Hernandez, I.: Implementation of Multi-objective Optimization for Vulnerability Analysis of Complex Networks. In: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, pp. 87–95 (2010)Google Scholar
  5. 5.
    Setola, R., De Porcellinis, S.: Complex networks and critical infrastructures. In: Chiuso, A., Fortuna, L., Frasca, M., Rizzo, A., Schenato, L., Zampieri, S. (eds.) Modelling, Estimation and Control of Networked Complex Systems. Understanding Complex Systems, vol. 2, pp. 91–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Pourbeik, P., Kundur, P.S., Taylor, C.W.: The anatomy of a power grid blackout-Root causes and dynamics of recent major blackouts. Power and Energy Magazine IEEE 4, 22–29 (2006)CrossRefGoogle Scholar
  7. 7.
    Chai, C.L., Liu, X., Zhang, W.J., Baber, Z.: Application of social network theory to prioritizing Oil & Gas industries protection in a networked critical infrastructure system. Journal of Loss Prevention in the Process Industries 24, 688–694 (2011)CrossRefGoogle Scholar
  8. 8.
    O’Rourke, T.D.: Critical infrastructure, interdependencies, and resilience. The Bridge, Quarterly publication by the National Academy of Engineering. Washington 37, 22 (2007)Google Scholar
  9. 9.
    Levy, J.K., Gopalakrishnan, C.: Promoting disaster-resilient communities: the Great Sumatra–Andaman earthquake of 26 December 2004 and the resulting Indian Ocean tsunami. Water Resources Development 21, 543–559 (2005)CrossRefGoogle Scholar
  10. 10.
    Lekkas, E., Andreadakis, E., Alexoudi, V., Kapourani, E., Kostaki, I.: The Mw= 9.0 Tohoku Japan earthquake (March 11, 2011) tsunami impact on structures and infrastructure. In: Environmental Geosciences and Engineering Survey for Territory Protection and Population Safety (EngeoPro) International Conference, Moscow, pp. 97–103 (2011)Google Scholar
  11. 11.
    Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems 21, 11–25 (2001)CrossRefGoogle Scholar
  12. 12.
    Pederson, P., Dudenhoeffer, D., Hartley, S., Permann, M.: Critical infrastructure interdependency modeling: a survey of US and international research. Idaho National Laboratory, Idaho Falls, Idaho 83415 (2006)Google Scholar
  13. 13.
    Gorman, S.P., Schintler, L., Kulkarni, R., Stough, R.: The revenge of distance: Vulnerability analysis of critical information infrastructure. Journal of Contingencies and Crisis Management 12, 48–63 (2004)CrossRefGoogle Scholar
  14. 14.
    Li, F.-y., Cao, Y.-z., Li, G.: A node importance assessment method of complex networks based on reliability measure. In: Zeng, D. (ed.) Future Intelligent Information Systems. LNEE, vol. 86, pp. 271–278. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Cai, W.D., Duan, Q.: Computing Vulnerability of Network Based on Genetic Algorithm. Journal of System Simulation 21, 1628–1632 (2009)Google Scholar
  16. 16.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)CrossRefGoogle Scholar
  17. 17.
    Murray, A.T.: An overview of network vulnerability modeling approaches. Geo Journal 78, 209–221 (2011)Google Scholar
  18. 18.
    Dudenhoeffer, D.D., Permann, M.R., Manic, M.: CIMS: A framework for infrastructure interdependency modeling and analysis. In: Proceedings of the 38th Conference on Winter Simulation (WSC 2006), pp. 478–485 (2006)Google Scholar
  19. 19.
    Helbing, D.: Agent-Based Modeling. In: Social Self-Organization, pp. 25–70. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Haimes, Y.Y., Horowitz, B.M., Lambert, J.H., Santos, J., Crowther, K., Lian, C.: Inoperability input-output model for interdependent infrastructure sectors. II: Case studies. Journal of Infrastructure Systems 11, 80–92 (2005)CrossRefGoogle Scholar
  21. 21.
    Conrad, S.H., LeClaire, R.J., O’Reilly, G.P., Uzunalioglu, H.: Critical national infrastructure reliability modeling and analysis. Bell Labs Technical Journal 11, 57–71 (2006)CrossRefGoogle Scholar
  22. 22.
    Lam, C.Y., Lin, J., Sim, M.S., Tai, K.: Identifying Vulnerabilities in Critical Infrastructures by Network Analysis. International Journal of Critical Infrastructures 9, 190–210 (2013)CrossRefGoogle Scholar
  23. 23.
    Wilensky, U.: NetLogo. Centre for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, http://ccl.northwestern.edu/netlogo
  24. 24.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1, 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Holland, J.H.: Genetic algorithms. Scientific American 267, 66–72 (1992)CrossRefGoogle Scholar
  26. 26.
    Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Akhila Kizhakkedath
    • 1
  • Kang Tai
    • 1
  • Mong Soon Sim
    • 2
  • Robert Lee Kong Tiong
    • 3
  • Jiaying Lin
    • 1
  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore
  2. 2.Information DivisionDSO National LaboratoriesSingapore
  3. 3.School of Civil and Environmental EngineeringNanyang Technological UniversitySingapore

Personalised recommendations