Advertisement

An Automatic Registration Method Based on Fiducial Marker for Image Guided Neurosurgery System

  • Minjie Yin
  • Xukun Shen
  • Yong Hu
  • Xiaorui Fang
Part of the Communications in Computer and Information Science book series (CCIS, volume 402)

Abstract

Patient-to-image registration is a fundamental step of Image Guided Neurosurgery System. In this paper, we propose an automatic technique to register the patient space with the preoperative images based on fiducial markers. Our technique includes three parts. First, we identify the markers in the image space based on multi-scale features and then cluster all this features to find marker centers. And in patient space, we combine Trajkovic’s and Harris’s algorithm to detect the corners in the center of the markers and then reconstruct 3D coordinates based on binocular stereo vision. At last, we register these two sets of centers using RANSAC. Experiments show that the marker centers can be localized precisely and the two space can be perfectly registered.

Keywords

multi-scale feature Image Guided Neurosurgery System registration fiducial marker detection corner detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleary, K., Peters, T.M.: Image-guided interventions: Technology review and clinical applications. Annual Review of Biomedical Engineering 12(1), 119–142 (2010)CrossRefGoogle Scholar
  2. 2.
    Grimson, W.E.L., Ettinger, G.J., White, S.J., Lozano-Perez, T., Wells, W.M., Kikinis, R.: An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Transactions on Medical Imaging 15(2), 129–140 (1996)CrossRefGoogle Scholar
  3. 3.
    Lee, J.D., Huang, C.H., Wang, S.T., Lin, C.W., Lee, S.T.: Fast-micp for frameless image-guided surgery. Medical Physics 37(9), 4551–4559 (2010)CrossRefGoogle Scholar
  4. 4.
    Fitzpatrick, J.M.: The role of registration in accurate surgical guidance. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 224(5), 607–622 (2010)CrossRefGoogle Scholar
  5. 5.
    Woerdeman, P.A., Willems, P.W., Noordmans, H.J., Tulleken, C.A., van der Sprenkel, J.W.: Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. Journal of Neurosurgery 106(6), 1012–1016 (2007)CrossRefGoogle Scholar
  6. 6.
    Maurer Jr, C.R., Maciunas, R.J., Fitzpatrick, J.M.: Registration of head ct images to physical space using a weighted combination of points and surfaces. IEEE Transactions on Medical Imaging 17(5), 753–761 (1998)CrossRefGoogle Scholar
  7. 7.
    Wang, M., Song, Z.: Automatic detection of fiducial marker center based on shape index and curvedness. In: Dohi, T., Sakuma, I., Liao, H. (eds.) MIAR 2008. LNCS, vol. 5128, pp. 81–88. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Wang, M., Song, Z.: Automatic localization of the center of fiducial markers in 3d ct/mri images for image-guided neurosurgery. Pattern Recogn. Lett. 30(4), 414–420 (2009)CrossRefGoogle Scholar
  9. 9.
    Zheng, G., Gerber, N., Widmer, D., Stieger, C., Caversaccio, M., Nolte, L.P., Weber, S.: Automated detection of fiducial screws from ct/dvt volume data for image-guided ent surgery. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2325–2328 (2010)Google Scholar
  10. 10.
    Morevec, H.P.: Towards automatic visual obstacle avoidance. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, IJCAI 1977, vol. 2, pp. 584–584 (1977)Google Scholar
  11. 11.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  12. 12.
    Trajkovic, M., Hedley, M.: Fast corner detection. Image and Vision Computing 16, 75–87 (1988)CrossRefGoogle Scholar
  13. 13.
    Guo, Y., Yu, M., Sun, Y.: Study on advanced rapid corner detection method. Computer Engineering and Applications 47(12), 159–161 (2011)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)CrossRefGoogle Scholar
  16. 16.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, Norwell (1994)CrossRefGoogle Scholar
  17. 17.
    Mikolajczyk, K.: Detection of local features invariant to affines transformations (July 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Minjie Yin
    • 1
  • Xukun Shen
    • 1
  • Yong Hu
    • 1
  • Xiaorui Fang
    • 1
  1. 1.State Key Laboratory of Virtual Reality Technology and SystemsBeihang UniversityBeijingChina

Personalised recommendations