Skip to main content

Geodesic-Preserving Polygon Simplification

  • Conference paper
Algorithms and Computation (ISAAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8283))

Included in the following conference series:

Abstract

Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon \(\mathcal{P}\) by a polygon \(\mathcal{P}'\) such that (1) \(\mathcal{P}'\) contains \(\mathcal{P}\), (2) \(\mathcal{P}'\) has its reflex vertices at the same positions as \(\mathcal{P}\), and (3) the number of vertices of \(\mathcal{P}'\) is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both \(\mathcal{P}\) and \(\mathcal{P}'\), our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of \(\mathcal{P}\).

Research supported by the ESF EUROCORES programme EuroGIGA - ComPoSe, Austrian Science Fund (FWF): I 648-N18 and grant EUI-EURC-2011-4306. T.H. supported by the Austrian Science Fund (FWF): P23629-N18 ‘Combinatorial Problems on Geometric Graphs’. M.K. received support of the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the European Union. A.P. is recipient of a DOC-fellowship of the Austrian Academy of Sciences at the Institute for Software Technology, Graz University of Technology, Austria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Hackl, T., Korman, M., Pilz, A., Vogtenhuber, B.: Geodesic-preserving polygon simplification. ArXiv e-prints (2013), arXiv:1309.3858

    Google Scholar 

  2. Aichholzer, O., Korman, M., Pilz, A., Vogtenhuber, B.: Geodesic order types. Algorithmica (to appear, 2013)

    Google Scholar 

  3. Aichholzer, O., Miltzow, T., Pilz, A.: Extreme point and halving edge search in abstract order types. Computational Geometry: Theory and Applications 46(8), 970–978 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arkin, E.M., Chiang, Y.-J., Held, M., Mitchell, J.S.B., Sacristan, V., Skiena, S., Yang, T.-H.: On minimum-area hulls. Algorithmica 21(1), 119–136 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronov, B.: On the geodesic Voronoi diagram of point sites in a simple polygon. In: SoCG, pp. 39–49 (1987)

    Google Scholar 

  6. Aronov, B., Fortune, S., Wilfong, G.T.: The furthest-site geodesic Voronoi diagram. Discrete and Computational Geometry 9, 217–255 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bern, M.W., Eppstein, D.: Mesh generation and optimal triangulation. In: Computing in Euclidean Geometry. Lecture Notes Series on Computing, vol. 4, pp. 47–123. World Scientific (1995)

    Google Scholar 

  8. Bose, P., Demaine, E.D., Hurtado, F., Iacono, J., Langerman, S., Morin, P.: Geodesic ham-sandwich cuts. In: SoCG, pp. 1–9 (2004)

    Google Scholar 

  9. Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J., Langerman, S., Meijer, H., Overmars, M.H., Whitesides, S.: Separating point sets in polygonal environments. International Journal of Computational Geometry and Applications 15(4), 403–420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

  11. Ghosh, S.: Visibility Algorithms in the Plane. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  12. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. Journal of Computer and System Sciences 39(2), 126–152 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guibas, L.J., Hershberger, J., Mitchell, J.S.B., Snoeyink, J.: Approximating polygons and subdivisions with minimum link paths. Journal of Computer and System Sciences 3(4), 383–415 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Gupta, H., Wenger, R.: Constructing pairwise disjoint paths with few links. ACM Transactions on Algorithms 3(3) (2007)

    Google Scholar 

  16. Hershberger, J., Suri, S.: An optimal algorithm for euclidean shortest paths in the plane. SIAM Journal of Computing 28(6), 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Computational Geometry: Theory and Applications 4, 63–97 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hertel, S., Mehlhorn, K.: Fast triangulation of simple polygons. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 207–218. Springer, Heidelberg (1983)

    Google Scholar 

  19. Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Information Processing Letters 25(1), 11–12 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitchell, J.S.B.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8, 55–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Computational Geometry, 2nd edn., pp. 607–642. Chapman & Hall/CRC (2004)

    Google Scholar 

  22. Mitchell, J.S.B., Polishchuk, V., Sysikaski, M.: Minimum-link paths revisited. ArXiv e-prints (2013), arXiv:1302.3091

    Google Scholar 

  23. Papadopoulou, E., Lee, D.T.: A new approach for the geodesic Voronoi diagram of points in a simple polygon and other restricted polygonal domains. Algorithmica 20(4), 319–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations—a survey. In: Surveys on Discrete and Computational Geometry—Twenty Years Later. Contemporary Mathematics, pp. 343–410 (2008)

    Google Scholar 

  25. Speckmann, B., Tóth, C.D.: Allocating vertex π-guards in simple polygons via pseudo-triangulations. Discrete and Computational Geometry 33(2), 345–364 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Suri, S.: A linear time algorithm for minimum link paths inside a simple polygon. Computer Vision, Graphics, and Image Processing 35(1), 99–110 (1986)

    Article  MATH  Google Scholar 

  27. Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue D’Intelligence Artificielle 3(2), 9–42 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aichholzer, O., Hackl, T., Korman, M., Pilz, A., Vogtenhuber, B. (2013). Geodesic-Preserving Polygon Simplification. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45030-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45029-7

  • Online ISBN: 978-3-642-45030-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics