Skip to main content

An Efficient Biomechanical Cell Model to Simulate Large Multi-cellular Tissue Morphogenesis: Application to Cell Sorting Simulation on GPU

  • Conference paper
Theory and Practice of Natural Computing (TPNC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8273))

Included in the following conference series:

Abstract

In the context of tissue morphogenesis study, in silico simulations can be seen as experiments in a virtual lab bench. Such simulations can facilitate the comprehension of a system, the test of hypotheses or the incremental refining of a model and its parameters. In silico simulations must be efficient and provide the possibility to simulate large tissues, containing thousands of cells. We propose to study tissue morphogenesis at the cellular level using our virtual biomechanical cell model. This model is based on a mass/spring system and coupled to a multi-agent system. We validated the relevance of our model through a case study: a cell sorting. Moreover, we took advantage of the large parallelism offered by graphics processing units (GPU), which contain up to thousands of cores: we implemented our model with the OpenCL framework. We ran large scale simulations, with up to 106 of our virtual cells. We studied the performance of our system on a CPU Intel Core i7 860, and two GPUs: a NVidia GeForce GT440 and a Nvidia GeForce GTX 690. The absence of synchronization in our implementation allowed the full benefits of the parallelism of these hardwares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballet, P., Tracqui, P.: Deformable virtual cell migration: biomechanical and multi-agent modeling of cell migration-agent modeling of cell migration. RSTI, TSI Series (Special issue “Modeling and simulation for post-genomics”) 26(1-2/2007) (2007)

    Google Scholar 

  2. Belmonte, J.M., Thomas, G.L., Brunnet, L.G., de Almeida, R.M.C., Chaté, H.: Self-propelled particle model for cell-sorting phenomena. Physical Review Letters 100, 248702 (2008)

    Article  Google Scholar 

  3. Chélin, Y., Azzag, K., Canadas, P., Averseng, J., Baghdiguian, S., Maurin, B.: Simulation of cellular packing in non-proliferative epithelia. Journal of Biomechanics 46(6), 1075–1080 (2013)

    Article  Google Scholar 

  4. Cussat-Blanc, S., Luga, H., Duthen, Y.: From Single Cell to Simple Creature Morphology and Metabolism. In: Artificial Life XI, pp. 134–141. MIT Press (2008)

    Google Scholar 

  5. Da-Jun, T., Tang, F., Lee, T., Sarda, D., Krishnan, A., Goryachev, A.: Parallel computing platform for the agent-based modeling of multicellular biological systems. In: Liew, K.-M., Shen, H., See, S., Cai, W. (eds.) PDCAT 2004. LNCS, vol. 3320, pp. 5–8. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Eyiyurekli, M., Lelkes, P.I., Breen, D.E.: A computational system for investigating chemotaxis-based cell aggregation. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1034–1049. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Fleury, V.: A change in boundary conditions induces a discontinuity of tissue flow in chicken embryos and the formation of the cephalic fold. The European Physical Journal E 34(7), 1–13 (2011)

    Article  MathSciNet  Google Scholar 

  8. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended potts model. Physical Review Letters 69(13), 2013–2016 (1992)

    Article  Google Scholar 

  9. Hoehme, S., Drasdo, D.: A cell-based simulation software for multi-cellular systems. Bioinformatics 26(20), 2641–2642 (2010)

    Article  Google Scholar 

  10. Jeannin-Girardon, A., Ballet, P., Rodin, V.: A software architecture for multi-cellular system simulations on graphics processing units. Acta Biotheoretica, 1–11 (2013), http://dx.doi.org/10.1007/s10441-013-9187-3

  11. Marée, A.F.M., Hogeweg, P.: How amoeboids self-organize into a fruiting body: Multicellular coordination in dictyostelium discoideum. Proceedings of the National Academy of Sciences 98(7), 3879–3883 (2001)

    Article  Google Scholar 

  12. Mogilner, A., Oster, G.: Force generation by actin polymerization ii: The elastic ratchet and tethered filaments. Biophysical Journal 84(3), 1591–1605 (2003)

    Article  Google Scholar 

  13. Moraru, I.I., Schaff, J.C., Slepchenko, B.M., Blinov, M.L., Morgan, F., Lakshminarayana, A., Gao, F., Li, Y., Loew, L.M.: Virtual Cell modelling and simulation software environment. IET Systems Biology 2(5), 352–362 (2008)

    Article  Google Scholar 

  14. Plimpton, S.J., Slepoy, A.: Microbial cell modeling via reacting diffusive particles. Journal Of Physics 16, 305–309 (2005)

    Google Scholar 

  15. Richmond, P., Walker, D., Coakley, S., Romano, D.: High performance cellular level agent-based simulation with flame for the gpu. Briefings in Bioinformatics 11(3), 334–347 (2010)

    Article  Google Scholar 

  16. Rieu, J.P., Kataoka, N., Sawada, Y.: Quantitative analysis of cell motion during sorting in 2d aggregates of hydra cells. Physical Review E 57, 924–931 (1998)

    Article  Google Scholar 

  17. Rudge, T., Haseloff, J.: A Computational Model of Cellular Morphogenesis in Plants. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 78–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Steinberg, M.: Reconstruction of tissues by dissiciated cells. Science 141(3579) (1963)

    Google Scholar 

  19. Stoma, S., Chopard, J., Godin, C., Traas, J.: Using mechanics in the modelling of meristem morphogenesis. In: 5th International Workshop on Functional-Structural Plant Models, Napier, New Zealand, pp. 52, 1–4 (2007)

    Google Scholar 

  20. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., III, C.A.H.: E-cell: software environment for whole-cell simulation. Bioinformatics 15(1), 72–84 (1999)

    Google Scholar 

  21. Walker, D.C., Southgate, J.: The virtual cell - a candidate coordinator for middle-out modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2008)

    Article  Google Scholar 

  22. Zhang, Y., Thomas, G.L., Swat, M., Shirinifard, A., Glazier, J.A.: Computer simulations of cell sorting due to differential adhesion. PLoS ONE 6(10) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeannin-Girardon, A., Ballet, P., Rodin, V. (2013). An Efficient Biomechanical Cell Model to Simulate Large Multi-cellular Tissue Morphogenesis: Application to Cell Sorting Simulation on GPU. In: Dediu, AH., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2013. Lecture Notes in Computer Science, vol 8273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45008-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45008-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45007-5

  • Online ISBN: 978-3-642-45008-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics