Skip to main content

Reductive Conversion of Carbon Dioxide Using Various Photocatalyst Materials

  • Chapter
  • First Online:
Transformation and Utilization of Carbon Dioxide

Abstract

The specific characteristics of the photocatalytic reduction of CO2 on various types of active titanium oxide catalysts are reviewed. UV-light irradiation of the bulk TiO2 powders in the presence of CO2 and H2O at room temperature under heterogeneous gas–solid conditions produced CH4 as the major product, while the predominant formations of CH3OH as well as CH4 were observed on the highly dispersed titanium oxide moiety anchored on zeolites and mesoporous silica materials. The CH3OH formation is originated from the unique properties of the charge-transfer excited state, i.e., (Ti3+—O)* of the tetrahedrally coordinated titanium oxides species within the silica frameworks. Several recent reports concerning efficient CO2 reduction by other unique photocatalytic systems are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anpo M, Yamashita H (1996) Photochemistry of surface species anchored on solid surface. In: Anpo M (ed) Surface photochemistry. Wiley, Chichester, pp 117–164

    Google Scholar 

  2. Schiavello M (ed) (1997) Heterogeneous photocatalysts. Wiley, Chichester

    Google Scholar 

  3. Anpo M (2000) Photofunctional zeolites. NOVA, New York

    Google Scholar 

  4. Anpo M, Yamashita H, Zhang SG (1996) Photoinduced surface chemistry. Curr Opin Solid State Mater Sci 1:630–635

    Article  CAS  Google Scholar 

  5. Anpo M (1989) Photocatalysis on small particle TiO2 catalysts. Reaction intermediates and reaction mechanisms. Res Chem Intermed 11:67–106

    Article  CAS  Google Scholar 

  6. Anpo M, Ichihashi Y, Takeuchi M, Yamashita H (1998) Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. Res Chem Intermed 24:143–149

    Article  CAS  Google Scholar 

  7. Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S, Anpo M (1999) Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. J Synchrotron Radiat 6:451–452

    Article  CAS  Google Scholar 

  8. Yamashita H, Honda M, Harada M, Ichihashi Y, Anpo M (1998) Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. J Phys Chem B 102:10707–10711

    Article  CAS  Google Scholar 

  9. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–640

    Article  CAS  Google Scholar 

  10. Halmann M (1983) Photochemical fixation of carbon dioxide. In: Grätzel M (ed) Energy resources through photochemistry and catalysis. Academic, New York, pp 507–565

    Google Scholar 

  11. Anpo M, Chiba K (1992) Photocatalytic reduction of carbon dioxide on anchored titanium oxide catalysts. J Mol Catal 74:207–302

    Article  CAS  Google Scholar 

  12. Yamashita H, Shiga A, Kawasaki S, Ichihashi Y, Ehara S, Anpo M (1995) Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts. Energy Conv Manag 36:617–620

    Article  CAS  Google Scholar 

  13. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:21–26

    Article  Google Scholar 

  14. Yamashita H, Nishiguchi H, Kamada N, Anpo M, Teraoka Y, Hatano H, Ehara S, Kikui K, Palmisano L, Sclafani A, Schiavello M, Fox MA (1994) Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Res Chem Intermed 20:815–823

    Article  CAS  Google Scholar 

  15. Yamashita H, Kamada N, He H, Tanaka K, Ehara S, Anpo M (1994) Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single crystals under UV-irradiation. Chem Lett 1994(5):855–858

    Article  Google Scholar 

  16. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636

    Article  CAS  Google Scholar 

  17. Anpo M, Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Park DR, Ehara S, Park SE, Chang JS, Yoo JW (1998) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within zeolites. Stud Surf Sci Catal 114:177–182

    Article  CAS  Google Scholar 

  18. Yamashita H, Fuji Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45:221–227

    Article  CAS  Google Scholar 

  19. Anpo M, Zhang SG, Fujii Y, Ichihashi Y, Yamashita H, Koyano K, Tatsumi T (1998) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal Today 44:327–332

    Article  CAS  Google Scholar 

  20. Ikeue K, Yamashita H, Anpo M (1999) Photocatalytic reduction of CO2 with H2O on titanium oxides prepared within the FSM-16 mesoporous zeolite. Chem Lett 1999(11):1135–1136

    Article  Google Scholar 

  21. Yamashita H, Ikeue K, Takewaki T, Anpo M (2002) In situ XAFS studies on the effects of the hydrophobic-hydrophilic properties of Ti-beta zeolites in the photocatalytic reduction of CO2 with H2O. Top Catal 18:95–100

    Article  CAS  Google Scholar 

  22. Yamashita H, Kawasaki S, Fujii Y, Ichihashi Y, Ehara S, Park SE, Chang JS, Yoo JW, Anpo M (1998) Photocatalytic reduction of CO2 with H2O on Ti/Si binary oxide catalysts prepared by the sol-gel method. Stud Surf Sci Catal 114:561–564

    Article  CAS  Google Scholar 

  23. Saladin F, Forss L, Kamber I (1995) Photosynthesis of CH4 at a TiO2 surface from gaseous H2O and CO2. J Chem Soc Chem Commun 5:533–534

    Article  Google Scholar 

  24. Anpo M, Tomonari M, Fox MA (1989) In situ photoluminescence of titania as a probe of photocatalytic reactions. J Phys Chem 93:7300–7303

    Article  CAS  Google Scholar 

  25. Yamashita H, Ichihashi Y, Harada M, Stewart G, Fox MA, Anpo M (1996) Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO2 powder catalysts. J Catal 158:97–101

    Article  CAS  Google Scholar 

  26. Frese KW (1991) Electrochemical reduction of carbon dioxide at intentionally oxidized copper electrodes. J Electrochem Soc 138:3338–3343

    Article  CAS  Google Scholar 

  27. Slamet HW, Nasution E, Purnama E, Kosela S, Gunlazuardi J (2005) Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319

    Article  CAS  Google Scholar 

  28. Raskö J, Solymosi F (1994) Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. J Phys Chem 98:7147–7152

    Article  Google Scholar 

  29. Anpo M, Matsuoka M, Shioya Y, Yamashita H, Giamello E, Morterra C, Che M, Patterson HH, Webber S, Ouellette S, Fox MA (1994) Preparation and characterization of the Cu+/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations. J Phys Chem 98:5744–5750

    Article  CAS  Google Scholar 

  30. Yamashita H, Matsuoka M, Tsuji K, Shioya Y, Anpo M, Che M (1996) In-situ XAFS, photoluminescence, and IR investigations of copper ions included within various kinds of zeolites. Structure of Cu(I) ions and their interaction with CO molecules. J Phys Chem 100:397–402

    Article  CAS  Google Scholar 

  31. Yamashita H, Ichihashi Y, Anpo M, Hashimoto M, Louis C, Che M (1996) Cavities: the structure and role of the active sites. J Phys Chem 100:16041–16044

    Article  CAS  Google Scholar 

  32. Yamashita H, Zhang SG, Ichihashi Y, Matsumura Y, Souma S, Tatsumi T, Anpo M (1997) Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework. Appl Surf Sci 121:305–309

    Article  Google Scholar 

  33. Farges F, Brown GE Jr, Rehr JJ (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochim Cosmochim Acta 60:3023–3060

    Article  CAS  Google Scholar 

  34. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89:5017–5021

    Article  CAS  Google Scholar 

  35. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) Photoformation and structure of oxygen anion radicals (O2 ) and nitrogen-containing anion radicals adsorbed on highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89:5689–5694

    Article  CAS  Google Scholar 

  36. Takewaki T, Hwang SJ, Yamashita H, Davis ME (1999) Synthesis of BEA-type molecular sieves using mesoporous materials as reagents. Micropor Mesopor Mater 32:265–273

    Article  CAS  Google Scholar 

  37. Camblor MA, Corma A, Esteve P, Martines M, Valencia S (1997) Epoxidation of unsaturated fatty esters over large-pore Ti-containing molecular sieves as catalysts: important role of the hydrophobic-hydrophilic properties of the molecular sieve. Chem Commun 33:795–796

    Google Scholar 

  38. Tatsumi T, Jappar N (1998) Properties of Ti-beta zeolites synthesized by dry-gel conversion and hydrothermal methods. J Phys Chem B 102:7126–7131

    Article  CAS  Google Scholar 

  39. Lin W, Han H, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108:18269–18273

    Article  CAS  Google Scholar 

  40. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal Lett 80:111–114

    Article  CAS  Google Scholar 

  41. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74:241–248

    Article  CAS  Google Scholar 

  42. Yamashita H, Kawasaki S, Ichihashi Y, Harada M, Anpo M, Stewart G, Fox MA, Louis C, Che M (1998) Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol. J Phys Chem B 102:5870–5875

    Article  CAS  Google Scholar 

  43. Ozcan O, Yukruk F, Akkaya EU, Uner D (2007) Dye sensitized CO2 reduction over pure and platinized TiO2. Top Catal 44:523–528

    Article  CAS  Google Scholar 

  44. Nguyen TH, Wu JCS (2008) Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Sol Energy Mater Sol Cells 92:864–872

    Article  CAS  Google Scholar 

  45. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2013) You have free access to this content photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. Chem Sus Chem 6:562–577

    Article  CAS  Google Scholar 

  46. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    CAS  Google Scholar 

  47. Yahaya AH, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem Phys Lett 400:206–212

    Article  CAS  Google Scholar 

  48. Iizuka K, Wato T, Miseki Y, Saito K, Kudo A (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 133:20863–20868

    Article  CAS  Google Scholar 

  49. Yan S, Yu H, Wang N, Li Z, Zou Z (2012) Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O4-modified mesoporous ZnGaNO under visible light irradiation. Chem Commun 48:1048–1050

    Article  CAS  Google Scholar 

  50. Mori K, Kawashima M, Che M, Yamashita H (2010) Enhancement of the photoinduced oxidation activity of a ruthenium(II) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance. Angew Chem Int Ed 49:8598–8601

    Article  CAS  Google Scholar 

  51. Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H (2013) The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew Chem Int Ed 52:7446–7450

    Article  CAS  Google Scholar 

  52. Cushing SK, Li JT, Meng FK, Senty TR, Suri S, Zhi MJ, Li M, Bristow AD, Wu NQ (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041

    Article  CAS  Google Scholar 

  53. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2012) Preparation of Au/TiO2 exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation from organic and inorganic compounds under irradiation of visible light. Catal Sci Technol 2:907–909

    Article  CAS  Google Scholar 

  54. Hou WB, Hung WH, Pavaskar P, Goeppert A, Aykol M, Cronin SB (2011) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal 1:929–936

    Article  CAS  Google Scholar 

  55. Hou WB, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuku, K., Mori, K., Yamashita, H. (2014). Reductive Conversion of Carbon Dioxide Using Various Photocatalyst Materials. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_9

Download citation

Publish with us

Policies and ethics